Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Agricultural bacteria: Blowing in the wind

09.05.2012
It was all too evident during the Dust Bowl what a disastrous impact wind can have on dry, unprotected topsoil. Now a new study has uncovered a less obvious, but still troubling, effect of wind: Not only can it carry away soil particles, but also the beneficial microbes that help build soil, detoxify contaminants, and recycle nutrients.

Using a powerful DNA sequencing technique, called pyrosequencing, a team led by USDA-ARS scientists Terrence Gardner and Veronica Acosta-Martínez analyzed the bacterial diversity in three Michigan agricultural soils, and in two eroded sediments generated from these soils during a wind tunnel experiment: coarse particles and fine dust.

Not only were the microbial assemblages on the coarse particles distinct from those on the dust, report the scientists in the current issue of the Journal of Environmental Quality, but the two types of eroded sediments were each enriched in certain groups of microbes compared with the parent soil, as well.

The findings suggest that specific bacteria inhabit specific locations in soil—and thus different groups and species can be carried away depending on the kinds of particles that erode. "It's important to know which microbes are being lost from soil," says Acosta-Martínez, a soil microbiologist and biochemist at the USDA-ARS Cropping Systems Laboratory in Lubbock, TX, "because different microbes have different roles in soil processes."

For example, the Proteobacteria—a diverse group critical to carbon and nitrogen cycling—were more associated in the study with eroded, coarse particles (those larger than 106 microns in size) than with the fine dust. Similarly, the dust housed its own community, in this case Bacteroidetes and other bacteria that are known to tolerate extreme dryness, gamma radiation, and other harsh conditions that may develop on dust particles as they float through the air, says Gardner, a postdoctoral researcher who is also affiliated with Alabama A&M University.

What this means is that wind erosion can both reduce the overall microbial diversity in farm fields, as well as deplete topsoil of specific groups of essential bacteria, say the researchers. At the same time, certain important groups, such as Actinobacteria that promote soil aggregation, remained in the parent soil despite the erosive conditions generated in the wind tunnel. And while fine dust can travel extremely long distances, coarse particles rarely move more than 20 feet, suggesting that they—and their associated microbes—should be fairly easy to retain with cover cropping and other soil conservation measures, Acosta-Martínez notes.

Helping farmers and land managers adopt practices that better conserve soil is one of the main goals of the USDA-ARS team's work, which also includes Ted Zobeck, Scott Van Pelt, Matt Baddock, and Francisco Calderón. In the Southern High Plains region, for example, intense cultivation of soil combined with a semi-arid climate can result in serious wind erosion problems. In fact, last summer's drought brought Dust Bowl-like conditions to the area, says Acosta-Martínez.

But "wind erosion is a national problem," she adds, with significant erosion occurring even in places where the growing season is humid and wet. Organic histosol soils in Michigan and many other parts of the country, for instance, are very susceptible to wind erosion when dry, especially since they're usually intensively farmed and often left bare in winter. Cover cropping or crop rotations not only help keep these soils in place, but can also build soil organic matter, which in turn promotes soil aggregation, water penetration, and general soil health.

It can take years, however, for farmers who've adopted new management practices to detect noticeable changes in levels of soil organic matter and other traditional soil quality measures. This is why Acosta-Martinez and Gardner have been analyzing soils with pyrosequencing, a method that yields a fingerprint of an entire microbial community, and well as identifies specific groups and species of bacteria based on their unique DNA sequences.

In this study, these microbial signatures told the researchers what's potentially being lost from soil during wind erosion events. But the fingerprints can be early indicators of positive outcomes, too.

"The microbial component is one of the most sensitive signatures of changes in the soil," says Acosta-Martínez, because of microbes' involvement in soil processes, such as carbon accumulation and biogeochemical cycling. "So, we're looking for any shifts in these signatures that could lead us to think that there are benefits to the soil with alternative management."

Teri Barr | EurekAlert!
Further information:
http://www.agronomy.org/

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>