Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How an aggressive fungal pathogen causes mold in fruits and vegetables

04.10.2013
UC Riverside-led team describes the strategy by which Botrytis cinerea blocks the defense system of its host plants

A research team led by a molecular plant pathologist at the University of California, Riverside has discovered the mechanism by which an aggressive fungal pathogen infects almost all fruits and vegetables.

The team discovered a novel "virulence mechanism" — the mechanism by which infection takes place — of Botrytis cinerea. This pathogen can infect more than 200 plant species, causing serious gray mold disease on almost all fruits and vegetables that have been around, even at times in the refrigerator, for more than a week.

Study results appear in the Oct. 4 issue of the journal Science.

Many bacterial, fungal and oomycete pathogens deliver protein effectors — molecules the pathogens secrete — into the cells of hosts to manipulate and, eventually, compromise host immunity.

The new study represents the first example of a fungal pathogen delivering RNA effectors, specifically small RNA effector molecules, into host cells to suppress host immunity and achieve infection of the host plant.

"To date, almost all the pathogen effectors studied or discovered have been proteins," said lead author Hailing Jin, a professor of plant pathology and microbiology. "Ours is the first study to add the RNA molecule to the list of effectors. We expect our work will help in the development of new means to control aggressive pathogens."

Small RNAs guide gene silencing in a wide range of eukaryotic organisms. In the case of Botrytis cinerea, small RNAs silence the expression of host defense genes, resulting in the host plant cells being less able to resist the fungal attack. The process is similar to how protein effectors weaken host immunity in the case of most pathogens.

"What we have discovered is a naturally-occurring cross-kingdom RNAi phenomenon between a fungal pathogen and a plant host that serves as an advanced virulence mechanism," Jin said.

RNA interference or RNAi is a conserved gene regulatory mechanism that is guided by small RNAs for silencing (or suppressing) genes.

Next, Jin and colleagues plan to continue investigating if the novel mechanism they discovered also exists in other aggressive pathogens.

Jin was joined in the research by UC Riverside's Arne Weiberg, Ming Wang, Hongwei Zhao, Zhihong Zhang and Isgouhi Kaloshian; and Feng-Mao Lin and Hsien-Da Huang at the National Chiao Tung University, Taiwan.

Jin was supported in this research by grants from the National Institutes of Health and the National Science Foundation.

UCR's Office of Technology Commercialization has filed a provisional patent on the research.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Botrytis cinerea RNA RNAi fruits and vegetables fungal pathogen plant cell small RNA

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>