Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adoption of advanced techniques could propel crop improvement

29.06.2012
Scientists could take greater strides toward crop improvement if there were wider adoption of advanced techniques used to understand the mechanisms that allow plants to adapt to their environments, current and former Purdue University researchers say.

In a perspective for the journal Science, Brian Dilkes, a Purdue assistant professor of genetics, and Ivan Baxter, a research computational biologist for the U.S. Department of Agriculture's Agricultural Research Service, argue that today's technology could allow scientists to match physiological and genetic characteristics of plants with the soil characteristics that promote or inhibit their growth. Making those connections could reduce the time necessary to improve plants that are coping with changing environmental and climatic conditions.

"Evolution has solved the problems that we face in terms of adapting plants to grow in a multitude of environments," Dilkes said. "If we understand these processes, we'll be able to apply that knowledge to maintaining diversity in natural systems and improving and maintaining crop yield."

The majority of a plant's makeup, besides carbon dioxide, comes from elements and minerals absorbed from the soil as the plant grows. The physiological and genetic mechanisms that allow plants to obtain iron from the soil, for instance, can also cause the plant to accumulate other elements. Understanding how those changes interact is an important piece of improving plants, Baxter said.

"This is just a hint of the complexity that's out there," said Baxter, a former post-doctoral researcher at Purdue who works for the USDA at the Donald Danforth Plant Science Center in St. Louis. "If we're going to make the necessary improvements in agricultural productivity, we will have to move forward with these techniques."

Much of the work done to understand how plants have adapted to their environments focuses on one gene and one element it controls at a time. Pinpointing one or more genes responsible for a particular trait can take years, even decades.

Dilkes and Baxter believe a wider adoption of molecular phenotyping techniques, such as ionomics and genome-wide association mapping, could allow scientists to work with multiple elements and genes at once.

"By focusing on one gene or one element at a time, you miss out on the other physiological mechanisms occurring in the plant," Dilkes said. "The potential to broaden our understanding of these complex interactions and have a dramatic effect on agriculture is there."

Genome-wide association mapping allows scientists to find genetic associations among multiple phenotypes, or physical traits. The process quickly shows which genes may be responsible for the physical characteristics.

Ionomics studies the elemental composition of plants and how those compositions change in response to environmental or genetic changes.

"Experiments with thousands of samples are now possible," Baxter said. "We've just started to put these things together."

Research in Baxter's lab is supported by the National Science Foundation, the U.S. Department of Energy and the U.S. Department of Agriculture's Agricultural Research Service.

Photos

Dilkes: http://www.purdue.edu/uns/images/2012/dilkes-b12.jpg

Baxter: http://www.purdue.edu/uns/images/2012/baxter-i12.jpg

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2012/120628DilkesScience.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>