Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More accurate protein sequence alignments for molecular genetics

03.11.2008
Sequence alignments are the basic tools of genomics research. In her doctoral thesis, Bioinformatics Scientist Virpi Ahola of MTT introduces a method for assessing the quality of protein sequence alignments.

In recent years, the whole genome sequencing projects of the human species and several other species have produced large amounts of raw sequence data. This consists of the establishment of DNA sequence of four bases (A, C, G and T). A genome contains DNA, which in turn contains the genetic information of an organism – in other words, instructions as to what the organism is like.

Virpi Ahola studied the protein sequence alignments of various species. The aim is to align the sequences of different species on top of each other so that the evolutionally, structurally or functionally corresponding positions of sequences appear in the same column. The length of the alignments varies from 50 or so to thousands of amino acids.

BASIC RESEARCH FOR MANY DIFFERENT DISCIPLINES

Nowadays, the alignments are performed with computer software. Virpi Ahola explains that this constitutes basic research that can be used in nearly all of the applications of molecular genomics, e.g. in medical and pharmaceutical research, plant and animal breeding, in food research and the conservation of animal and plant genetic resources.

“It is important to strive for maximal accuracy in the alignments, in order to prevent mistakes in the analysis in its early stages,” stresses Ahola.

The statistical method that she has developed predicts the likelihood of matching the same positions of proteins from different species. “Even though arranging sequences of letters on top of each other may seem easy, performing the alignments is actually a highly demanding task. No comprehensive mathematical or computational solution has so far been found for the problem of aligning multiple sequences,” comments Ahola.

MANY NEW IDEAS FOR METHODOLOGY

The biological relevance of the method developed by Virpi Ahola is verified by quality control. This is achieved with the help of databases providing biologically plausible alignments. In her study, Ahola realigned these sequences. The new alignments were then compared to the alignments provided by the database with the method described in the thesis. The result of the calculation was then tested by comparing it to the “true” quality of the alignment.

“The results show that my method can be used to reliably predict the quality of alignments,” Virpi Ahola concludes.

In her doctoral thesis, Ahola introduces a method that can be used to locate functionally and structurally important sites of proteins.

The doctoral thesis in Statistics “Statistical methods for conservation and alignment quality in proteins” by Virpi Ahola (MSocSc) will be cross-examined at the University of Turku on 7 November 2008. The opponent is Professor Arne Elofsson from Sweden and the custodian Professor Esa Uusipaikka.

For more information, please contact: Virpi Ahola, MTT Agrifood Research Finland, virpi.ahola@mtt.fi , +358 (0)3 4188 3202

Ulla Jauhiainen | alfa
Further information:
http://www.mtt.fi
http://portal.mtt.fi/portal/page/portal/www_en/News/Press%20releases

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>