Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Better Test for a Potato Pest

24.08.2011
A U.S. Department of Agriculture (USDA) scientist has created a new weapon in the war being waged against the potato cyst nematode-a diagnostic test that identifies the type of nematode infesting a grower's field.

Xiaohong Wang, a molecular biologist with the Agricultural Research Service (ARS) Robert W. Holley Center for Agriculture and Health in Ithaca, N.Y., has filed a patent application on the monitoring tool, developed in part by cloning and sequencing key genes. ARS is USDA's principal intramural scientific research agency. This research supports the USDA priorities of ensuring food safety and promoting international food security.

There are two types of potato cyst nematode (PCN), the golden nematode and the pale cyst nematode. Being able to tell one from the other is important because breeders have developed potatoes that can resist the golden nematode, but have yet to develop varieties that resist the pale cyst nematode. If the pale cyst nematode is found in a field, potatoes cannot be grown there.

The golden nematode (Globodera rostochiensis) has been a problem in New York State since 1941 and has been found in Canada. The pale cyst nematode (G. pallida) was discovered in Idaho in 2006 and remains a major threat in Europe. Potatoes and seed potatoes are freely exchanged across international boundaries, so monitoring potato growing regions is essential.

Traditional methods of distinguishing between the two PCN species have relied on time-consuming morphological analyses and PCR (polymerase chain reaction) assays. They also require relatively large samples of nematode cysts. But Wang and her colleagues cloned the parasitism gene the nematodes use to produce a protein that plays an important role in the infection process, known as chorismate mutase.

The researchers then sequenced those chorismate mutase genes, compared the sequences, and identified unique regions in each sequence. They then developed a probe capable of recognizing the unique regions in each nematode's DNA. Wang described the process in a paper in the European Journal of Plant Pathology.

The diagnostic test is one of several new technologies designed to distinguish PCN types from each other, but it is a thousand times more sensitive than other systems and is expected to be widely used in regulatory and quarantine programs because it can give reliable results from tiny amounts of nematode material.

Read more about this research in the August 2011 issue of Agricultural Research magazine.

Dennis O'Brien | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>