Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quarter of the world's population depends on degrading land

24.03.2009
Productive cropland and forest most affected

A new study published in the journal Soil Use and Management attempts for the first time to measure the extent and severity of land degradation across the globe and concludes that 24% of the land area is degrading – often in very productive areas.

Land degradation - the decline in the quality of soil, water and vegetation – is of profound importance but until now there have been no consistent global data by which to assess its extent and severity.

For nearly thirty years the world has depended on the Global Assessment of Soil Degradation (GLASOD) based on the subjective judgement of soil scientists who knew the conditions in their countries. GLASOD indicated that 15 per cent of the land area was degraded, but this was a map of perceptions, rather than measurement of land degradation.

The new study by Bai et al. measures global land degradation based on a clearly defined and consistent method using remotely sensed imagery. The results are startling. The new assessment indicates that 24 per cent of the land has been degraded over the period 1981-2003 - but there is hardly any overlap with the GLASOD area that recorded the cumulative effects of land degradation up to about 1990.

One of the authors, Dr David Dent of ISRIC - World Soil Information explains: "Degradation is primarily driven by land management and catastrophic natural phenomena.

Our study shows the extent and severity of land degradation measured in terms of loss of net primary productivity, making allowance for climatic variability. Overall, a quarter of the world's population depends directly on these degrading areas. The worst-hit areas are Africa south of the Equator, SE Asia and S China. The worst-affected countries, with more than 50 per cent of territory degrading are, in Africa, the Congo, Zaire, Equatorial Guinea, Gabon, Sierra Leone, Zambia and the most affected (95 per cent degrading) Swaziland; in Asia, Myanmar, Malaysia, Thailand, Laos, Korea and Indonesia. In terms of the rural population affected, the greatest numbers are in China, with nearly half a billion, India, Indonesia, Bangladesh and Brazil. The usual suspects, such as the African Sahel and around the Mediterranean are much less affected."

The resulting loss of carbon fixation from the atmosphere over the measured period amounts to a thousand million tonnes. At a shadow price of $50 per tonne, the loss of carbon fixed amounts to $50 billion – and the real cost is far greater in terms of emissions to the atmosphere through loss of soil organic carbon.

Comparison with land use reveals that 19% of the degrading area is cropland and 43% forest. Cropland occupies 12% of the land area and forest 28%, so both are affected disproportionately.

The study found only weak correlations between degrading land and rural population density and with biophysical factors such aridity. The researchers conclude that more detailed analysis of land use history is needed to uncover the underlying social and economic drivers of land degradation.

Samantha Holford | EurekAlert!
Further information:
http://www.wiley.com

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>