Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A modernised methodology for obtaining new varieties of potato

02.12.2009
Research into the potato tuber at the Basque Institute for Agricultural Research and Development and at the NEIKER-Tecnalia Technology Centre has, in recent years, focused on the development of new varieties of potato adapted to Spanish agro-climatic conditions.

The Basque technology centre has updated the traditional system for improving strains of the tuber by involving novel techniques that enable obtaining new varieties that are the most resistant, productive and apt for both fresh consumption and for industrial processing. In 2009 three new varieties have been inscribed in the Spanish Office for Plant Varieties, the Basque names of which are Leire, Mirari y Harana.

The genetic improvement programme for obtaining new varieties developed by NEIKER-Tecnalia are focused on the following characteristics:

- Morphological and physiological: a good appearance of the plant, with homogeneous tubers, thin skin, eyes at a surface level, high yield, stability in production, short cycle and good conservation.

- Resistance to pests and disease: resistance to one or more of the following pathogens: viruses (mainly PVY); nematodes (Globodera rostochiensis and G. pallida) and fungi (Phytophthora infestans, Rhizocotnia solani, Alternaria solani, Fusarium spp.).

- Culinary quality: for both fresh consumption and for industrial processing: chips, frozen potatoes and purees, amongst others.

In recent years NEIKER-Tecnalia has incorporated various complementing methodologies into the traditional and predominant one – such as the enhancement of the diploid level, the cultivation of tissues applied to the maintenance and micropropagation of varieties, selection assisted by means of molecular markers and genotyping.

Classical improvement programmes are based on the creation of variability by means of directed crosses and the subsequent selection of the desired descendent genotypes and in successive clonal generations. The three initial and fundamental phases in the process are: selection of genitors, programme of crosses and the selection of seedlings in the first generation.

The selection of genitors is one of the key elements in the NEIKER-Tecnalia programme; it has a Germoplasm Bank with 500 commercial varieties, apart from enhancement clones and species of the Solanum genus that form part of parentals employed in the crossing programmes. This database may be consulted at: www.neiker.net/neiker/germoplasma.

Crosses are mainly undertaken in winter. In the female genitors the stalks with inflorescences are cut, the buds castrated and then pollination carried out, keeping the stems in jars with water, fungicide and antibiotic, in a greenhouse. If the pollination has been successful, berries are formed, each of which may contain up to 200 seeds.

Once the seeds are mature, their extraction and conservation are carried out. The descendency of each crossing is sowed separately in seed beds. Families from parentals immune to the Y virus (PVY) are inoculated artificially, eliminating seedlings with symptoms. The rest is transplanted to pots in order to obtain the first year clones. During the gathering a more intense selection is carried out, taking into consideration the appearance of the tuber: homogeneity, depth of the eyes, colour of the peel and the flesh.

In this way, the sowing of the selected clones is undertaken successively, following a procedure that enables an estimate of production. Based on advanced, third-year clones, the analyses of consumption quality – both fresh and industrial – are incorporated.

Third generation clones are sent to a Spanish trials network, which distributes them to different zones throughout the country with the objective of being sown and consumed. Moreover, advanced clones are also sent to countries such as Holland, Germany and Argentina.

Based on the overall data on quality, resistance and production, the best clones are selected to be sent to the Registry of Commercial Varieties at the Spanish office for Plant Varieties. After two years of trials, the National Assessment Commission decides the inclusion or otherwise in the list of new varieties.

As can be observed, the period for obtaining official registration of a variety oscillates between six and seven years. Nevertheless, it should be taken into account that it is an ongoing process, in which each year clones at all stages of selection coexist in a parallel manner.

Characterisation and evaluation of native varieties
Recently initiated has been the characterisation of varieties of the potato native to Latin America and belonging to the Solanum genus. To date, these valuable tubers have not been efficiently exploited due to the geographical isolation of their zones of origin. This is why NEIKER-Tecnalia, in collaboration with other institutions in Latin America, is undertaking a project to evaluate a series of native varieties with the goal of determining their nutritional characteristics and their quality and resistance features.

In this way, varieties have been found with high content of dry material and resistant to fungi. The final goal is their incorporation as parentals in the NEIKER-Tecnalia programme for obtaining new varieties.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>