Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Model to Measure Soil Health in the Era of Bioenergy

The loss of soil organic matter due to poor land-management practice threatens farmlands, and while the use for crop residues as feedstock for biomass ethanol and bio-based products increases, these materials no longer contribute to the health of the soil. Scientist have now developed a method of measuring soil quality to assure an adequate amount of soil organic matter, called the CQESTR model.

One of the biggest threats to today’s farmlands is the loss of soil organic carbon (SOC) and soil organic matter (SOM) from poor land-management practices.

The presence of these materials is essential as they do everything from providing plants with proper nutrients to filtering harmful chemical compounds to the prevention of soil erosion. Sustainable management practices for crop residues are critical for maintaining soil productivity, but being able to measure a loss in the quality of soil can be difficult.

In an article published in the Soil Science Society of America Journal, a team of USDA-Agricultural Research Service (ARS) scientists detail a method of measuring soil quality using a new model. The researchers combined their knowledge of crop, soil, and climatic data to predict long-term SOM and SOC changes to evaluate the effect of an array of management practices, including crop residue removal, on long-term SOC levels by using this new model. CQESTR, pronounced “sequester,” a contraction of “C sequestration” (meaning carbon storage), is a process-based model developed by ARS scientists at the Columbia Plateau Conservation Research Center in Pendleton, OR.

Four long-term experiments with several management systems were selected to examine the ability of the model to simulate the long-term effects of management practice on SOC dynamics. These management systems included crop rotations, tillage practices, and organic amendments, as well as crop residue removal. The results showed success in predicting both SOC depletion and sequestration.

At a time when the role of agriculture is expanding to include many different roles in society, including the production of cellulosic ethanol, the ability to predict the loss of SOC and SOM is essential to maintaining productive crops. The model can be used to consider a wide range of scenarios before making recommendations or implementing proposed changes to management practices. In conjunction with the local conditions, the model can guide planning and development of sustainable crop and soil management practices.

“The development of soil management practices that maintain adequate SOM for nutrient cycling, soil structure stability, and sufficient biomass to prevent erosion is essential for decisions on land use for food, fiber, feed, and bioenergy,” says Hero Gollany, one of the article’s authors and an ARS soil scientist.

The model has great potential to be used by all land managers to guide the amount of crop residue that can be sustainably harvested as feedstock for biomass ethanol and bio-based products without degrading the soil resource, environmental quality, or productivity. More studies are still needed to evaluate the model’s performance in predicting the amount of crop residue required to maintain the SOM concentration in different soils under a range of management and climatic conditions.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

Soil Science Society of America Journal,, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>