Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Line of Defense: Researchers Find Cattle Vaccine Works to Reduce E. coli O157:H7

08.08.2012
A commercial vaccine for cattle can effectively reduce levels of E. coli by more than 50 percent, a Kansas State University study has found. The vaccine is also effective using two doses instead of the recommended three doses, which can help cut costs for the beef industry.

David Renter, associate professor of epidemiology, is the principal investigator on a project that researched the effectiveness of products used to prevent the shedding of E. coli O157:H7 in cattle. The research appears in a recent online version of the journal Vaccine and helps improve current preventative methods for addressing food safety concerns.

While E. coli O157:H7 does not affect cattle, it causes foodborne disease in humans. Vaccines and other products may be given to cattle to help prevent the spread of the bacteria.

"We wanted to test how well these products work to control E. coli O157:H7 in a commercial feedlot with a large population of cattle that were fed in the summer and may be expected to have a high level of E. coli O157:H7," Renter said.

Other Kansas State University researchers involved include T.G. Nagaraja, university distinguished professor of microbiology; Nora Bello, assistant professor of statistics; Charley Cull, doctoral student in pathobiology, Oakland, Neb.; and Zachary Paddock, doctoral student in pathobiology, Manhattan, Kan. Abram Babcock, an August 2010 Kansas State University doctoral graduate, also was involved in the research.

Using a commercial feedlot setting, the researchers studied more than 17,000 cattle during an 85-day period. They studied two products: a vaccine and a low-dose direct-fed microbial.

"What's unique about this study is the number of animals we used, the research setting and that we used commercial products in the way that any cattle producer could use them," Renter said. "We didn't want it to be any different than the way somebody would use the products in a commercial feedlot."

The researchers found that the vaccine reduced the number of cattle that were shedding E. coli O157:H7 in feces by more than 50 percent. E. coli shedding was reduced by more than 75 percent among cattle that were high shedders of E. coli. While the vaccine label suggests that it is given in three doses, the researchers found that two doses of the vaccine significantly reduced E. coli.

"Showing that level of efficacy with two doses is really important because a shift to two doses from three could significantly cut costs for the beef industry," Renter said. "In terms of logistics, it can be difficult for commercial feedlot production systems to vaccinate animals three times. Both of these benefits help when considering how the vaccine can be adopted and implemented in the industry."

The researchers also discovered that the low-dose direct-fed microbial product did not work as well as the vaccine. Renter said while the study used a lower dose of the direct-fed microbial and could find no evidence that it reduced E. coli shredding, it is possible that the direct-fed microbial product is more effective at a higher dose.

"This vaccine is an option for reducing E. coli," Renter said. "We have shown that this vaccine works and that it is a tool that could be adopted in the industry."

The research was supported as part of a three-year $1 million grant from the U.S. Department of Agriculture. Nagaraja and Renter are involved in several other studies on E. coli O157 and other types of E. coli closely related to O157, including research associated with the $25 million coordinated agricultural program, or CAP, grant with the University of Nebraska Lincoln and several other universities. That five-year grant is supported by the USDA's National Institute of Food and Agriculture.

David Renter, 785-532-4801, drenter@k-state.edu

David Renter | Newswise Science News
Further information:
http://www.k-state.edu

Further reports about: Cattle Defense E. coli E. coli O157:H7 Vaccine Works agriculture commercial vaccine

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>