Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A curious interaction in the regeneration of oak forests

22.01.2013
Researchers at the UPM have observed as voles are able to distinguish the acorns containing insect larvae from those that have not. This fact determines the dispersion and germination of acorns, and therefore the regeneration of forests of oaks.
The Haedo de Montejo (Madrid) is a well preserved mixed forest of oak and beech. This is the place where researchers at the School of Forestry from the Universidad Politecnica de Madrid have carried out a research on scattering patterns of acorns for voles and found that when seed are attacked by insects, the fact that larva is or not inside of the acorn can modify the dispersion pattern, and consequently the regeneration of these types of forests.

The acorns are the fruits produced by oaks, holm oaks and cork oaks that perpetuate their species, move and colonize new places. They are autumnal fruits highly valued by wildlife because of its large size, its abundance and its high calorie lipid and carbohydrate. They are many animals interested in this fruit, some of them even before they ripen and fall into the ground.
This is the case of small beetles, the weevils (Curculio sp.), that lay their eggs inside the unripe acorns when they are still growing in the tree. These eggs hatch small larvae in worms shaped and feed inside the acorns without altering the external appearance of this fruit. After, the acorns fall into the ground and are reachable for the rest of animals that seek this fruit during the autumn days (wild boar, deer and mice, among others). When larva completes its development it drills a small hole out of the acorn and buries itself in the soil and, through the metamorphosis, becomes a new adult beetle.

Voles (Apodemus sylvaticus) are the main consumers of acorns and they hide this fruit during autumns in order to consume them in winter time. However, many acorns are forgotten in hiding places allowing them a better germination and consequently new trees. Surprisingly, the same acorn is usually moved or stolen by another vole, and achieving so a dispersal distance up to hundreds meters with respect to its mother tree and,

therefore contributing to better movement of genes and a successful regeneration of these trees.

But, what do voles do with the attacked acorns by beetle larvae? There is not just an answer and depends on the fact that larvae has gone out or has stayed in the acorn. Acorns whose larvae had emerged out were rapidly rejected by voles barely touching, moving or storing them. These acorns were exposed on the ground and failed to thrive in a new tree.

However, those acorns in which the larva was still inside the fruit were moved and stored by voles. The study1 reveals that voles liked these larvae (rich in proteins) and feed on them, decreasing the harm produced by these worms over the acorns. Therefore, voles scattered and buried these acorns that finally contributed to generate new plants. The fact that the larva was still inside resulted definitive for the near future of the acorn, and therefore, the future of oak forests.

The nature maintains its compensation mechanisms and, an apparent harmful beetle can be attractive to voles that, at the same time, releases acorns from this enemy and help them to thrive thanks to its rich substance what allows them to survive winter and maintain this favorable relationship between vole and acorn.

These results reveal that we do not know ye the behavior of those ecosystems that we aim to preserve. The knowledge of multiple existing interactions among animals and plants are essential to know what should be protected and how our forests should be protected.

Ciencia y Sociedad | alfa
Further information:
http://www.madrimasd.org
http://www.upm.es

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>