Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D Laser Scanning: A New Soil Quality Measurement

05.12.2008
Bulk density is an important measurement for soil researches to obtain when determining a soil’s quality, and a new three-dimensional laser scanning technique has shown to be an effective alternative to traditional methods, which are often difficult for researchers to perform properly. The results of the study are published in the November-December 2008 issue of the Soil Science Society of America Journal.

Soil researchers pay close attention to bulk density, as it is one of the most common soil measurements and it is often used as a measure of soil quality. A soil’s bulk density can be indicative of the ease of root penetration, water movement, and soil strength. Measuring this value with traditional methods has been difficult in the past, but researchers have developed a new method using laser scanning technology.

Scientists at the University of California-Riverside have learned to apply the use of automated three-dimensional laser scanning to measure bulk density of soil clods and rock fragments. A commercially available desktop three-dimensional scanner was used in the study, and the results are published in the November-December 2008 issue of the Soil Science Society of America Journal. The research was funded by the University of California Kearney Foundation of Soil Science.

Past conventional methods of measuring bulk density that have been used include the clod method. With this system, intact soil clods are coated with an impervious substance, such as liquid paraffin or saran, and clod volume is measured by water displacement. This method can be difficult and labor intensive. After measuring clod volume, gravel fragments must be removed from the clod and weighed so that bulk density can be expressed for the fine earth fraction. Removing the coating is difficult, making the separation of gravel tedious and subject to error. Furthermore, the clod is destroyed, eliminating the possibility of additional analyses on the same sample.

To test the laser scanning method, soil clods of varying textures were collected and scanned using the three-dimensional scanner during summer 2007. Scanned images were assembled to create a three-dimensional image of the sample and calculate clod volume. Bulk density of the same clod was measured again using the paraffin-coated clod method, and gravels were removed after volume was determined by the paraffin-coated clod method. Gravel-free bulk density was calculated using measurements made by both methods.

The results showed the success of the laser scanning method, as the volume measurements determined by the three-dimensional scanner and the coated clod method showed excellent agreement across a wide range of soil textures (loamy coarse sand, silt loam, sandy clay loam, and sandy clay) used in this study. Calculated bulk density values also showed close agreement between the two methods.

The three-dimensional laser scanning technology offers other benefits, according to article author Ann M. Rossi of University of California-Riverside Soil and Water Sciences Program. Three-dimensional images of peds can be used to make visual displays of soil structure, and to make quantitative determinations of ped properties related to structure type, size, and grade. The technology can also be used to measure surface area, allowing for assessments of surface roughness.

Through careful use of this three-dimensional laser scanning technology in measuring soil bulk density, researchers can conduct a more thorough analysis of a soil’s quality, helping to further understand how healthy crops are produced.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://soil.scijournals.org/cgi/content/abstract/72/6/1591.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit http://www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>