Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3,000 rice genome sequences made publicly available on World Hunger Day

28.05.2014

The 3000 Rice Genomes Project, a collaboration between the Chinese Academy of Agricultural Sciences, the International Rice Research Institute, and BGI, provides a massive rice genomic sequence resource for worldwide use

The open-access, open-data journal GigaScience (published by BGI and Biomed Central), announces today the publication of an article on the genome sequencing of 3000 rice strains along with the release of this entire dataset in a citable format in journal's affiliated open-access database, GigaDB.


Grains of rice reveal just a tiny proportion of the variation of traits in the over 40,000 different varieties of rice in the world.

Credit: This image is part of the image collection of the International Rice Research Institute (IRRI) http://irri.org

The publication and release of this enormous data set (which quadruples the current amount of publicly available rice sequence data) coincides with World Hunger Day to highlight one of the primary goals of this project— to develop resources that will aid in improving global food security, especially in the poorest areas of the world.

This work is the completion of stage one of the 3000 Rice Genomes Project, a collaborative effort made up of the Chinese Academy of Agricultural Sciences (CAAS), the International Rice Research Institute (IRRI), and BGI, and is funded by the Bill and Melinda Gates Foundation and the Chinese Ministry of Science and Technology.

With more than 1/8th of the world's population living in extreme hunger and poverty, and an every-increasing world population (estimated to reach 9.6 billion by 2050), there is a huge need to create new resources to improve crop yield, reduce the impact of agricultural practices on the environment, and develop food crops that are of high yield and nutrition and can grow successfully in environments stressed by drought, pests, diseases, or poor soil quality.

While rice research has greatly advanced since the completion of the first high-quality rice genome sequence in 2005, there has been limited change in breeding practices that are important for producing improved and better adapted rice strains.

The 3000 Rice Genomes Project provides a major step forward for addressing these challenges by creating and releasing an extensive amount of genetic information that can ultimately be applied to intelligent breeding practices, which take advantage of the natural variation between different plant strains and information on the genetic mechanisms that underlie these traits to select strains for breeding that will be more successful in producing hybrid strains with characteristics that are highly suited for growing successfully in different environments.

Dr. Zhikang Li, the Project Director at CAAS, stated that the 3000 Rice Genomes Project is part of an ongoing effort to provide resources specifically for poverty-stricken farmers in Africa and Asia, aiming to reach at least 20 million rice farmers in 16 target countries (8 African and 8 Asian countries). "Rice is the staple food for most Asian people, and has increasing consumption in Africa," said Dr. Li. "With decreasing resources (water and land), food security is —and will be— the most challenging issue in these countries, both currently and in the future. As a scientist in rice genetics, breeding and genomics, it would be a dream to help to solve this problem."

Dr. Jun Wang, Director of BGI, added to this, saying that, "the population boom and worsening climate crisis have presented big challenges on global food shortage and safety. BGI is dedicated to applying genomics technologies to make a fast, controllable and highly efficient molecular breeding model possible. This opens a new way to carry out agricultural breeding. With the joined forces with CAAS, IRRI and Gates Foundation, we have made a step forward in big-data-based crop research and digitalized breeding. We believe every step will get us closer to the ultimate goal of improving the wellbeing of human race."

According to IRRI director general Dr. Robert Zeigler, "access to 3,000 genomes of rice sequence data will tremendously accelerate the ability of breeding programs to overcome key hurdles mankind faces in the near future." This collaborative project, added Zeigler, "will add an immense amount of knowledge to rice genetics, and enable detailed analysis by the global research community to ultimately benefit the poorest farmers who grow rice under the most difficult conditions."

Drs, Wang and Zeigler, and Dr. Jia-Yang Li, President of CAAS, provide further information on the goals of this project in an accompanying commentary in GigaScience.

To reach their goals, the three-institute collaboration has not only released 13.4 terabytes of data, they have also collected seeds from each strain (available in the International Rice Genebank Collection housed at IRRI). Having banked seeds is essential to make full use of these now genetically defined strains to develop and sustain the most appropriate hybrid strains for different environments. There remains, however, one additional component to achieve this goal: this is information that allows researchers and breeders to directly link the genetic information (genotype) to the physical traits (phenotype) of these different strains. This requires careful assessment and curation of each rice strain for agriculturally important traits, which can then be linked to genetic markers in the now available genome sequences.

Current breeding practices, which have essentially remained the same since the development of agriculture, typically use apparent physical traits to guide strain selection for crossbreeding with the hope that the offspring will manifest a combination and improvement of the desired traits, such as drought, pest and disease resistance and increased crop productivity and improved nutritional value. However, the underlying genetic makeup can often confound breeder expectations because unknown genetic interactions can block, modify, or alter the development of the selected physical characteristics when two strains are bred. Thus, trial and error and multiple successive breeding stages are often required.

Having full knowledge of the genetic makeup of a plant allows researchers to identify genetic markers related to specific physical traits, and better understand how different genetic interactions effect plant phenotypes. This information allows a breeder to make more intelligent choices in strain selection, resulting in more accurate and rapid development of rice strains that are better suited to different agricultural environments in poor and environmentally stressed economies.

This is a process that requires a great deal of care and manpower. Thus, the release of these data, and making the genetic information freely available to plant breeders and scientists across the world, will greatly aid in defining genotype/phenotype relationships as well as serve as an extensive resource improving our understanding of plant biology.

Publication in GigaScience includes storage of relevant associated data in the journal's affiliated database, GigaDB, where every dataset is provided with a digital object identifier (DOI), making it possible to cite, find and track data in standard scientific literature, which serves as a strong incentive for researchers to more rapidly release expensive and work-intensive datasets for community use. On top of hosting the terabytes of supporting data in GigaDB, to provide the most extensive availability to the community, the sequence reads for this project have also been submitted to the SRA repository at PRJEB6180.

###

Further Reading

About GigaScience

GigeScience is co-published by BGI, the world's largest genomics organization, and BioMed Central, the world's first open-access publisher. The journal covers research that uses or produces 'big data' from the full spectrum of the life sciences. It also serves as a forum for discussing the difficulties of and unique needs for handling large-scale data from all areas of the life sciences. The journal has a completely novel publication format — one that integrates manuscript publication with complete data hosting, and analyses tool incorporation. To encourage transparent reporting of scientific research as well as enable future access and analyses, it is a requirement of manuscript submission to GigaScience that all supporting data and source code be made available in the GigaScience database, GigaDB , as well as in their publicly available repositories. GigaScience can provide users access to associated online tools and workflows, and includes an integrated data analysis platform, GigaGalaxy, maximizing the potential utility and re-use of data. (Follow us on twitter @GigaScience; Facebook, and keep up-to-date from our blog.

Scott Edmunds | Eurek Alert!

Further reports about: BGI IRRI breeding global food security resources sequences strains

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>