Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Thermal pollution' in rivers not fully mediated by gravel augmentation

09.06.2011
Cool patches created by adding gravel, however, can serve as important refuges for fish

Although adding gravel to a river to replace lost sediments won't likely cool the whole river channel, it can create cool water refuges that protect fish from thermal pollution, according to a U.S. Forest Service Pacific Northwest Research Station study.

The research—featured in the June 2011 issue of Science Findings, a monthly publication of the station—is among the first to explore the interplay between sub-surface water flow and temperature in large rivers and is helping to guide river restoration strategies in the Pacific Northwest.

In the study, which began in 2006, station research hydrologist Gordon Grant and Oregon State University colleagues Barbara Burkholder and Roy Haggerty examined the effect of subsurface water flow through riverbed sediment—a process known as "hyporheic flow"—on daily minimum and maximum water temperatures. The focus of their study was Oregon's Clackamas River, which, at the time, was undergoing intensive restoration planning efforts led by Portland General Electric (PGE) as part of the relicensing process for the river's hydroelectric system. The addition of gravel to the large river as part of these efforts—aimed primarily at reversing changes in river channel morphology that have resulted from sediment transport being interrupted by the dams—allowed the researchers to explore whether doing so had any measurable effect on reducing "thermal pollution," or unusually high water temperatures caused by human activities like dam operation, logging, and wastewater treatment.

"Previous work suggested that water emerging from gravel bars might actually be cooler than the surrounding water," said Grant.

The research team hypothesized that the continual cycling of subsurface water through the riverbed—during which cool nighttime water would travel through the gravel bar, exiting and mixing with the stream during the warmer daytime—would have a "buffering" effect that would keep the river's daily peak temperatures down, but not necessarily change the river's overall mean temperature. To explore their hypothesis, they mapped the locations of gravel bars along a 15-mile stretch of the river and documented the temperature of water cycling into and out of each of them.

They found 52 temperature differences within the stretch of the Clackamas, with temperatures at these locations from 1 to 4 degrees cooler than the main channel. The researchers were then able to link the cooler areas with specific gravel bar features and with specific times and locations within the Clackamas to create models that depicted the subsurface flow patterns—ultimately revealing that a very small percentage of the river's water actually passed through the gravel bars, making any overall effect on the mean temperature minute.

"Results showed a hundredth of a degree of temperature change through a single bar," said Grant. "Not much."

This finding suggests that gravel augmentation alone is not likely to have a significant temperature-mediating effect in large rivers. However, the work demonstrated that gravel augmentation may provide local habitat benefits to fish and small invertebrates by creating cool areas within rivers where they can seek refuge during hot weather.

To read the June 2011 issue of Science Findings online, visit http://www.treesearch.fs.fed.us/pubs/37952.

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us
http://www.treesearch.fs.fed.us/pubs/37952

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>