Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Thermal pollution' in rivers not fully mediated by gravel augmentation

Cool patches created by adding gravel, however, can serve as important refuges for fish

Although adding gravel to a river to replace lost sediments won't likely cool the whole river channel, it can create cool water refuges that protect fish from thermal pollution, according to a U.S. Forest Service Pacific Northwest Research Station study.

The research—featured in the June 2011 issue of Science Findings, a monthly publication of the station—is among the first to explore the interplay between sub-surface water flow and temperature in large rivers and is helping to guide river restoration strategies in the Pacific Northwest.

In the study, which began in 2006, station research hydrologist Gordon Grant and Oregon State University colleagues Barbara Burkholder and Roy Haggerty examined the effect of subsurface water flow through riverbed sediment—a process known as "hyporheic flow"—on daily minimum and maximum water temperatures. The focus of their study was Oregon's Clackamas River, which, at the time, was undergoing intensive restoration planning efforts led by Portland General Electric (PGE) as part of the relicensing process for the river's hydroelectric system. The addition of gravel to the large river as part of these efforts—aimed primarily at reversing changes in river channel morphology that have resulted from sediment transport being interrupted by the dams—allowed the researchers to explore whether doing so had any measurable effect on reducing "thermal pollution," or unusually high water temperatures caused by human activities like dam operation, logging, and wastewater treatment.

"Previous work suggested that water emerging from gravel bars might actually be cooler than the surrounding water," said Grant.

The research team hypothesized that the continual cycling of subsurface water through the riverbed—during which cool nighttime water would travel through the gravel bar, exiting and mixing with the stream during the warmer daytime—would have a "buffering" effect that would keep the river's daily peak temperatures down, but not necessarily change the river's overall mean temperature. To explore their hypothesis, they mapped the locations of gravel bars along a 15-mile stretch of the river and documented the temperature of water cycling into and out of each of them.

They found 52 temperature differences within the stretch of the Clackamas, with temperatures at these locations from 1 to 4 degrees cooler than the main channel. The researchers were then able to link the cooler areas with specific gravel bar features and with specific times and locations within the Clackamas to create models that depicted the subsurface flow patterns—ultimately revealing that a very small percentage of the river's water actually passed through the gravel bars, making any overall effect on the mean temperature minute.

"Results showed a hundredth of a degree of temperature change through a single bar," said Grant. "Not much."

This finding suggests that gravel augmentation alone is not likely to have a significant temperature-mediating effect in large rivers. However, the work demonstrated that gravel augmentation may provide local habitat benefits to fish and small invertebrates by creating cool areas within rivers where they can seek refuge during hot weather.

To read the June 2011 issue of Science Findings online, visit

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>