Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's elemental: Potato after-cooking darkening may be affected by nutrients

16.04.2010
Research advances capacity to predict, minimize ACD

Irish potato, one of the world's major food crops, is increasingly grown and processed for use in various products; consider the popularity of consumer favorites like French fries and potato chips.

In the closely scrutinized food production industry, products are accepted or rejected on the basis of color and appearance, among other attributes. Quality defects such as after-cooking darkening, or ACD—a change in potato's normal flesh color to gray, blue, purple, or black—can affect the marketability of potatoes for both processing and fresh markets. With the current expansion of the potato-processing industry around the world comes a renewed interest in finding innovative methods to prevent ACD.

After-cooking darkening occurs when potatoes are exposed to air after cooking, including boiling, baking, frying, or dehydration. ACD has been reported from every potato-growing area in the world and is one of the most widespread, undesirable traits for potatoes and other tubers, even though it does not affect the flavor or nutritional value of the crops. ACD is most common in boiled or steamed potatoes, but is also problematic in processed products such as oil-blanched French fries, dehydrated potatoes, canned potatoes, prepeeled potatoes, and reconstituted dehydrated potatoes.

Researchers at Nova Scotia Agricultural College hypothesized that the concentration and distribution of elements in potato tubers could be used to predict after-cooking darkening. The objective of the study, published in a recent issue of HortScience, was to identify the elements (plant nutrients) whose content may relate to the severity of potato ACD. The researchers grew two common potato cultivars ('Shepody' and 'Russet Burbank') in three Eastern Canadian provinces for two seasons using various fertilization regimes. Fourteen elements were studied: phosphorus, calcium, magnesium, potassium, sulfur, iron, copper, sodium, zinc, boron, manganese, aluminum, silicon, and chlorine.

The "After Cooking Darkening" readings were found to be affected by fertilizer and a "cultivar–segment interaction". ACD readings were higher in tubers from fertilized plots compared with tubers from nonfertilized plots. The distribution of ACD was found to be similar in both cultivars studied, with the stem end being the darkest, the center segment being the lightest, and the flesh darkening again slightly toward the bud end. The elements most strongly correlated with ACD severity were phosphorus, calcium, copper, and magnesium. According to the researchers, the study provides a useful method to predict the severity of ACD, which could assist the potato processing industry in predicting the occurrence of ACD and in developing agronomic treatments to minimize it.

"This study demonstrated how information from element distribution can be used in predicting the occurrence of a tuber quality trait, specifically ACD", commented Dr. Gefu Wang-Pruski, corresponding author of the study.

The authors note that additional experiments to determine how tuber element content affects the change in ACD severity over time may make it possible to predict the severity of ACD in tubers in late stages of storage by determining the element concentrations and their spatial distribution of the same lot of tubers at harvest.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/7/1866

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

Further reports about: ACD ASHS French fries HortScience Horticultural Science food crop potato

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>