Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Business as usual' crop development won't satisfy future demand

08.07.2010
Although global grain production must double by 2050 to address rising population and demand, new data from the University of Illinois suggests crop yields will suffer unless new approaches to adapt crop plants to climate change are adopted. Improved agronomic traits responsible for the remarkable increases in yield accomplished during the past 50 years have reached their ceiling for some of the world's most important crops.

"Global change is happening so quickly that its impact on agriculture is taking the world by surprise," said Don Ort, U of I professor of crop sciences and USDA/ARS scientist. "Until recently, we haven't understood the urgency of addressing global change in agriculture."

The need for new technologies to conduct global change research on crops in an open-field environment is holding the commercial sector back from studying issues such as maximizing the elevated carbon dioxide advantage or studying the effects of ozone pollution on crops.

However, U of I's Free Air Concentration Enrichment (FACE) research facility, SoyFACE, is allowing researchers to conduct novel studies using this technology capable of creating environments of the future in an open-field setting.

"If you want to study how global change affects crop production, you need to get out of the greenhouse," Ort said. "At SoyFACE, we can grow and study crops in an open-field environment where carbon dioxide and ozone levels can be raised to mimic future atmospheric conditions without disturbing other interactions."

From an agricultural standpoint, one of the few positive aspects of global change has been the notion that elevated carbon dioxide in the atmosphere will stimulate photosynthesis and result in increased crop yields.

But recent studies show that crops grown in open fields under elevated carbon dioxide levels resulted in only half the yield increase expected and half of what the United Nation's Intergovernmental Panel on Climate Change used in their model predictions regarding the world's food supply in 2050.

There's no doubt that carbon dioxide levels are rising. At the beginning of the Industrial Revolution, atmospheric carbon dioxide levels were 260 parts per million (ppm). Today, those numbers have increased to 385 ppm. By 2050, carbon dioxide levels are expected to be 600 ppm.

"Elevated carbon dioxide is creating a global warming effect that in turn is driving other climate change factors such as precipitation patterns," Ort said. "By 2050, rainfall during the Midwest growing season is projected to drop 30 percent."

U of I researchers are also studying how elevated ozone levels will affect crop yields.

Soybean plants are being evaluated in elevated ozone at SoyFACE. New studies show that yields in the tri-state area of Indiana, Illinois and Iowa have been suppressed by 15 percent due to ozone pollution. Ort said if the same cultivars of soybean are used in 2050 that are being planted now, producers can expect to see an additional 20 percent drop in yield due to expected increases in ozone levels by the middle of the century.

"Ozone is a secondary pollutant caused by the interaction of sunlight with pollution clouds produced in industrialized areas and carried over rural areas by wind," Ort said. "For example, if pollution from Chicago blows out of the city into agricultural areas, it can interact with sunlight to produce ozone and cause plant yields to suffer."

Because ozone is an unstable gas, its concentration levels vary greatly, Ort said. Thus, agricultural areas located near industrial areas will face the greatest challenges. Unfortunately, of the world's two top-growing areas for soybean – the United States faces a much greater ozone challenge than Brazil.

"The SoyFACE experiment and historical data recorded over the past 10 years both indicate that for every additional one part per billion of ozone, soybean yields will decrease 1.5 bushels per acre," Ort said. "We are applying for funding to examine corn's sensitivity to ozone at SoyFACE, but a historical analysis indicates a significant sensitivity and yield loss."

In addition to generating results about the response of crops to global change, SoyFACE has provided proof of concept that adaptation of crop plants to global change can be achieved in the field. Ort believes that this approach can and needs to be scaled to much larger sizes necessary for conventional selective breeding.

Currently, only five FACE research facilities exist in the world. SoyFACE is the largest and most expansive in terms of number of global change factors under investigation. Researchers at SoyFACE are assisting in the development of additional FACE experiments in Brazil, India and Australia.

"FACE technology, coupled with revolutionary genomic tools, can markedly accelerate the breeding cycle," Ort said. "Once we discover the suites of genes that control the optimal response of plants growing in global change conditions, we can screen germplasm collections to narrow down hundreds of thousands of cultivars before testing the best ones in the field."

Ort said top priorities of focus include tropical areas that are already food insecure and areas such as the U.S. Corn Belt that produce a large percentage of the world food supply.

"More research in these areas is critical," he said. "How top-producing areas fare with climate change will be very important in determining global food security for the future."

This research was published in the Annual Review of Plant Biology, Current Opinion in Plant Biology, and Plant Physiology. Researchers include Ort, Stephen Long, and Elizabeth Ainsworth of the U of I, and Xin-Guang Zhu of the Shanghai Institute of Biological Sciences in China. Research was funded by the U.S. Department of Agriculture, the Department of Energy, and the Illinois Council on Food and Agricultural Research.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>