Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015

It doesn’t happen often that a young scientist makes a significant and unexpected discovery, but postdoctoral researcher Stephen Wu of the U.S. Department of Energy's Argonne National Laboratory just did exactly that. What he found—that you don't need a magnetic material to create spin current from insulators—has important implications for the field of spintronics and the development of high-speed, low-power electronics that use electron spin rather than charge to carry information.


Argonne National Laboratory

Typically when referring to electrical current, an image of electrons moving through a metallic wire is conjured. Using the spin Seebeck effect (SSE), it is possible to create a current of pure spin (a quantum property of electrons related to its magnetic moment) in magnetic insulators. However, this work demonstrates that the SSE is not limited to magnetic insulators but also occurs in a class of materials known as paramagnets. Since magnetic moments within paramagnets do not interact with each other like in conventional ferromagnets, and thus do not hold their magnetization when an external magnetic field is removed, this discovery is unexpected and challenges current theories for the SSE. New ways of generating spin currents may be important for low-power high-speed spin based computing (spintronics), and is also an area of great fundamental interest. The paramagnetic SSE changes the way we think about thermally driven spintronics, allowing for the creation of new devices and architectures where spin currents are generated without ferromagnetic materials, which have been the centerpiece of all spin-based electronic devices up until this point.

Wu’s work upends prevailing ideas of how to generate a current of spins. “This is a discovery in the true sense,” said Anand Bhattacharya, a physicist in Argonne's Materials Science Division and the Center for Nanoscale Materials (a DOE Office of Science user facility), who is the project's principal investigator. “There’s no prediction of anything like it.”

Spin is a quantum property of electrons that scientists often compare to a tiny bar magnet that points either “up” or “down.” Until now scientists and engineers have relied on shrinking electronics to make them faster, but now increasingly clever methods must be used to sustain the continued progression of electronics technology, as we reach the limit of how small we can create a transistor. One such method is to separate the flow of electron spin from the flow of electron current, upending the idea that information needs to be carried on wires and instead flowing it through insulators.

To create a current of spins in insulators, scientists have typically kept electrons stationary in a lattice made of an insulating ferromagnetic material, such as yttrium iron garnet (YIG). When they apply a heat gradient across the material, the spins begin to “move”—that is, information about the orientation of a spin is communicated from one point to another along the lattice, much in the way a wave moves through water without actually transporting the water molecules anywhere. Spin excitations known as magnons are thought to carry the current.

Wu set out to build on previous work with spin currents, expanding it to different materials using a new technique he’d developed. He worked on making devices a thousand times smaller than the typical systems used, giving him more control over the heat and allowing him to create larger thermal gradients in a smaller area. “That was the key to why we were able to do this experiment,” he says.

Wu looked at a layer of ferromagnetic YIG on a substrate of paramagnetic gadolinium gallium garnet (GGG). He expected to see no action from the GGG: in a paramagnet the spins aren’t aligned as they are in a ferromagnet. They generate no magnetic field, produce no magnons, and there appears to be no way for the spins to communicate with one another. But to everyone’s surprise, the spin current was stronger in the GGG than it was in the YIG. “The spins in the system were not talking to each other. But we still found measurable spin current,” says Wu. “This effect shouldn’t happen at all.”

The next step is to figure out why it does.

“We don’t know the way this works,” said Bhattacharya. “There’s an opportunity here for somebody to come up with a theory for this.”

The scientists also want to look for other materials that display this effect. “We think that there may be other new physics working here,” said Bhattacharya. “Because, since the material is not a ferromagnet, the objects that are moving the spin are not what we typically understand.”

In the meantime, said Wu, “We’ve just taken ferromagnetism off its pedestal. In a spintronic device you don’t have to use a ferromagnet. You can use either a paramagnetic metal or a paramagnetic insulator to do it now.”

For more information, see the paper, "Paramagnetic spin Seebeck effect," published in the journal Physical Review Letters.

This work was supported by the DOE Office of Science. The Center for Nanoscale Materials is a DOE Office of Science User Facility.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Angela Hardin
Argonne National Laboratory
media@anl.gov
Phone: 630-252-5501

Angela Hardin | newswise
Further information:
http://www.anl.gov

Further reports about: Laboratory Magnetic Spin electron spin ferromagnetic material

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>