Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

York researchers discover important mechanism behind nanoparticle reactivity

04.11.2013
An international team of researchers has used pioneering electron microscopy techniques to discover an important mechanism behind the reaction of metallic nanoparticles with the environment.

Crucially, the research led by the University of York and reported in Nature Materials, shows that oxidation of metals - the process that describes, for example, how iron reacts with oxygen, in the presence of water, to form rust - proceeds much more rapidly in nanoparticles than at the macroscopic scale.

This is due to the large amount of strain introduced in the nanoparticles due to their size which is over a thousand times smaller than the width of a human hair.

Improving the understanding of metallic nanoparticles – particularly those of iron and silver - is of key importance to scientists because of their many potential applications. For example, iron and iron oxide nanoparticles are considered important in fields ranging from clean fuel technologies, high density data storage and catalysis, to water treatment, soil remediation, targeted drug delivery and cancer therapy.

The research team, which also included scientists from the University of Leicester, the National Institute for Materials Science, Japan and the University of Illinois at Urbana-Champaign, USA, used the unprecedented resolution attainable with aberration-corrected scanning transmission electron microscopy to study the oxidisation of cuboid iron nanoparticles and performed strain analysis at the atomic level.

Lead investigator Dr Roland Kröger, from the University of York's Department of Physics, said: "Using an approach developed at York and Leicester for producing and analysing very well-defined nanoparticles, we were able to study the reaction of metallic nanoparticles with the environment at the atomic level and to obtain information on strain associated with the oxide shell on an iron core.

"We found that the oxide film grows much faster on a nanoparticle than on a bulk single crystal of iron – in fact many orders of magnitude quicker. Analysis showed there was an astonishing amount of strain and bending in nanoparticles which would lead to defects in bulk material."

The scientists used a method known as Z-contrast imaging to examine the oxide layer that forms around a nanoparticle after exposure to the atmosphere, and found that within two years the particles were completely oxidised.

Corresponding author Dr Andrew Pratt, from York's Department of Physics and Japan's National Institute for Materials Science, said: "Oxidation can drastically alter a nanomaterial's properties - for better or worse - and so understanding this process at the nanoscale is of critical importance. This work will therefore help those seeking to use metallic nanoparticles in environmental and technological applications as it provides a deeper insight into the changes that may occur over their desired functional lifetime."

The experimental work was carried out at the York JEOL Nanocentre and the Department of Physics at the University of York, the Department of Physics and Astronomy at the University of Leicester and the Frederick-Seitz Institute for Materials Research at the University of Illinois at Urbana-Champaign.

The scientists obtained images over a period of two years. After this time, the iron nanoparticles, which were originally cube-shaped, had become almost spherical and were completely oxidised.

Professor Chris Binns, from the University of Leicester, said: "For many years at Leicester we have been developing synthesis techniques to produce very well-defined nanoparticles and it is great to combine this technology with the excellent facilities and expertise at York to do such penetrating science. This work is just the beginning and we intend to capitalise on our complementary abilities to initiate a wider collaborative programme."

The research was supported by a Max-Kade Foundation Visiting Professorship stipend to Dr Kröger and financial support from the World Universities Network (WUN). The Engineering and Physical Sciences Research Council (EPSRC) funded the initial stages of the project (EP/D034604/1).

Caron Lett | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>