Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


X-rays reveal molecular arrangements for better printable electronics

By employing powerful X-rays that can see down to the molecular level of organic materials used in printable electronics, researchers are now able to determine why some materials perform better than others. Their findings, published in the journal Nature Materials, could lead to cheaper, more efficient printable electronic devices.

"This work is exciting because it helps reveal in new detail how we can achieve high performance transistors and solar cells with polymers," said UC Santa Barbara professor of materials Michael Chabinyc, who, with UCSB chemistry graduate student Justin Cochran and North Carolina State physicists Harald Ade and Brian Collins, set out to find out which materials and which processing steps worked better, in what is still a largely trial-and-error process for manufacturers of printable electronics. This effort also involved collaboration with an international team, including researchers from Monash University in Australia and Univeristät Erlangen-Nümberg in Germany.

This is an image of a printed electronics system.
Credit: Peter Allen

Printed electronics is a process that employs fairly common printing methods to deposit inks containing organic conductive molecules onto surfaces, to creating circuitry for a variety of electronic devices, including photovoltaics, displays, and even luminescent clothing. The process is faster and cheaper than conventional production techniques for the same products, and could pave the way toward making these devices more accessible to consumers.

However, until recently, the process of selecting these organic materials –– and what steps to take in order to improve their performance –– was something of a mystery. Some materials and treatments worked better than others, and the researchers set out to find out why.

The researchers developed a technique that used powerful X-rays to peer into these organic materials at the molecular level. They found that the performance of the material had to do with its molecular alignment, and that this alignment was controlled by simple methods such as heating and molecular interactions at surface levels.

"In transistors, we found that as the alignment between molecules increased, so did the performance," Collins said. "In the case of the solar cells, we discovered alignment of molecules at interfaces in the device, which may be the key to more efficient harvesting of light. For both, this was the first time anyone had been able to really look at what was happening at the molecular level."

The researchers hope that the new X-ray technique will provide a better perspective into the nature of organic materials used in printed electronics.

"We're hoping that this technique will give researchers and manufacturers greater insight into the fundamentals of these materials," Collins said. "Understanding how these materials work can only lead to improved performance and better commercial viability."

Funding for work on organic transistors at UCSB and NCSU was supported by the Division of Materials Research of the National Science Foundation, through an award from the American Recovery and Reinvestment Act.

Sonia Fernandez | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>