Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray study images structural damage in lithium-ion batteries

15.04.2015

Fast charging cycles make batteries age more quickly

Charging lithium-ion batteries too quickly can permanently reduce the battery capacity. Portions of the energy storage structure are thereby destroyed and deactivated.


After 25 fast charging cycles, the manganese distribution in the electrode shows large holes.

Credit: Ulrike Bösenberg/DESY

These structural changes have been visualized for the first time by DESY researcher Dr Ulrike Bösenberg along with her team at DESY's X-ray source PETRA III.

Their fluorescence studies show that even after only a few charging cycles, damage to the inner structure of the battery material is clearly evident, damage which takes longer to arise during slower charging.

The results of the studies will be published in the latest edition of the academic journal Chemistry of Materials (published online in advance).

Lithium-ion batteries are very common because they possess a high charge density. Typically the storage capacity is significantly diminished after one thousand charges and discharges.

A promising candidate for a new generation of such energy storage systems, particularly due to their high voltage of 4.7 Volts, are what are known as lithium-nickel-manganese-oxide spinel materials or LNMO spinels.

The electrodes consist of miniature crystals, also referred to as crystallites, which are connected with binder material and conductive carbon to form the thin layer.

The team around Bösenberg, which also includes researchers from the University of Giessen, from the University of Hamburg and from Australia's national science agency CSIRO, studied the negative electrodes of this LiNi0.5Mn1.5O4 compound at PETRA III's X-ray microfocus beamline P06.

They could determine, with half a micrometre (millionth of a meter) resolution, the precise distribution of nickel and manganese over large areas on the electrode by utilising a novel X-ray fluorescence detector.

The molecular structure of the active material in the battery electrodes is composed of nickel (Ni), manganese (Mn) and oxygen (O) - where the structure is a relatively rigid crystal lattice into which the lithium ions, as mobile charge carriers, can be inserted or extracted.

In their present study, the researchers exposed different battery electrodes to twenty-five charging and discharging cycles each, at three different rates and measured the elementary distribution of the electrode components.

The scientists could show that during fast charging, manganese and nickel atoms are leached from the crystal structure. In their investigation, the researchers spotted defects such as holes in the electrode with up to 100 microns (0.1 millimetre) diameter. The destroyed areas can no longer be utilized for lithium storage.

Utilizing the X-ray fluorescence method in their studies, the researchers took advantage of the fact that X-rays can excite chemical elements into fluorescence, a short-term radiation emission. The wavelength or energy of the fluorescent radiation is a characteristic fingerprint for each chemical element.

This way, the distribution of the individual materials in the electrode can be precisely determined. For this task, the researchers used a novel fluorescence detector, only two of which currently exist worldwide in this form.

This Maia detector, a joint development by CSIRO and Brookhaven National Laboratory in the US, consists of nearly four hundred individual elements that collect the sample's fluorescent radiation. Due to the detector's high energy resolution and sensitivity, it is capable of localizing several chemical elements simultaneously.

The narrow and high-intensity PETRA III X-ray beam could precisely scan the sample surface, which measured approximately 2x2 square millimetres, with a resolution of half a micrometre. Investigating each point took merely a thousandth of a second.

"It is the first time that we could localize these inhomogeneities with such a high spatial resolution over so large an area," says Bösenberg. "We hope to better understand the effects and to create the foundation for improved energy storage devices."

What is still puzzling is where the dissolved nickel and manganese atoms end up - this is a question the researchers would like to resolve in further studies. "There are indications that the dissolved material, at least partially, settles on the anode, which inflicts twice the damage to the battery properties," Bösenberg summarizes.

###

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

Reference:

Correlation between Chemical and Morphological Heterogeneities in LiNi0.5Mn1.5O4 Spinel Composite Electrodes for Lithium-Ion Batteries Determined by Micro-X-ray Fluorescence Analysis; Ulrike Bösenberg, Mareike Falk, Christopher G. Ryan, Robin Kirkham, Magnus Menzel, Jürgen Janek, Michael Fröba, Gerald Falkenberg and Ursula E. A. Fittschen; Chemistry of Materials, 27 (7), 2015; DOI: 10.1021/acs.chemmater.5b00119

Media Contact

Dr. Thomas Zoufal
presse@desy.de
49-408-998-1666

 @desynews

http://www.desy.de 

Dr. Thomas Zoufal | EurekAlert!

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>