Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


WSU researchers use a 3-D printer to make bone-like material

Clears way for custom-made replacement tissue

It looks like bone. It feels like bone. For the most part, it acts like bone.

And it came off an inkjet printer.

Washington State University researchers have used a 3D printer to create a bone-like material and structure that can be used in orthopedic procedures, dental work, and to deliver medicine for treating osteoporosis. Paired with actual bone, it acts as a scaffold for new bone to grow on and ultimately dissolves with no apparent ill effects.

The authors report on successful in vitro tests in the journal Dental Materials and say they're already seeing promising results with in vivo tests on rats and rabbits. It's possible that doctors will be able to custom order replacement bone tissue in a few years, says Susmita Bose, co-author and a professor in WSU's School of Mechanical and Materials Engineering.

"If a doctor has a CT scan of a defect, we can convert it to a CAD file and make the scaffold according to the defect," Bose says.

The material grows out of a four-year interdisciplinary effort involving chemistry, materials science, biology and manufacturing. A main finding of the paper is that the addition of silicon and zinc more than doubled the strength of the main material, calcium phosphate. The researchers also spent a year optimizing a commercially available ProMetal 3D printer designed to make metal objects.

The printer works by having an inkjet spray a plastic binder over a bed of powder in layers of 20 microns, about half the width of a human hair. Following a computer's directions, it creates a channeled cylinder the size of a pencil eraser.

After just a week in a medium with immature human bone cells, the scaffold was supporting a network of new bone cells.

The research was funded with a $1.4 million grant from the National Institutes of Health.

Video of Bose discussing her work can be found at

Susmita Bose | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>