Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s First Success in In Situ Tracking of Electrochemical Reactions at Solid/Liquid Interfaces by Photoelectron Spectroscopy

31.10.2013
The results may elucidate the process at solid/liquid interfaces of energy devices like rechargeable batteries and fuel cells. It will also contribute to the development and performance of cell electrodes and catalyst materials.
National Institute for Materials Science (NIMS)
Japan Science and Technology Agency
A research group led by NIMS GREEN and JST, in collaboration with WPI-MANA and the Synchrotron X-ray Station at SPring-8, developed a new measurement system using high-energy X-rays of SPring-8 and a Si thin-membrane window. Through this achievement, the group succeeded for the first time in the world in tracking electrochemical reactions at solid/liquid interfaces in situ by X-ray photoelectron spectroscopy, which could only be used for measurement in a vacuum in the past.

Layout of the In Situ XPS Measurement System

A research group led by Prof. Dr. Kohei Uosaki, Research Manager of the Batteries and Fuel Cells Field at the Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) of the National Institute for Materials Science (NIMS) and Dr. Takuya Masuda, Researcher of the Precursory Research for Embryonic Science and Technology (PRESTO) program at the Japan Science and Technology Agency (JST), in collaboration with NIMS International Center for Materials Nanoarchitectonics (WPI-MANA) and the Synchrotron X-ray Station at SPring-8, developed a new measurement system using high-energy X-rays of SPring-8 and a silicon (Si) thin-membrane window. Through this achievement, the group succeeded for the first time in the world in tracking electrochemical reactions at solid/liquid interfaces in situ by X-ray photoelectron spectroscopy (XPS), which could only be used for measurement in a vacuum in the past.

A solid/liquid interface is an important part that converts and uses energy in familiar energy devices, such as fuel cells and solar cells. Recent research and development which aims to maximize the efficiency of energy use faces the need to break away from materials development dependent on empirical rules and to adopt clear evaluation methods that enable strategic materials design. Accordingly, there has been a strong desire for methods to directly observe and measure the dynamic behavior of reactions at solid/liquid interfaces in the environment where the reactions are taking place (in situ). Meanwhile, XPS is a method to investigate the surface species and oxidation states of the surface of a substance by irradiating the substance with X-rays and analyzing the energy of the photoelectrons emitted from the elements on the surface. Conventionally, XPS could only be used for measurement in a vacuum, and could not be used to directly observe the reactions at solid/liquid interfaces in situ.

The research group succeeded in observing the electrochemical reactions at a solid/liquid interface in a non-vacuum environment in situ by having high-energy synchrotron X-rays of SPring-8 penetrate through a thin Si membrane window with a thickness of 15 nm. Specifically, the group developed a measurement system that uses a thin Si membrane as a window for transmitting X-rays and photoelectrons, as a barrier separating a vacuum and a liquid, and as an electrode for electrochemical reactions, and uses the high-energy synchrotron X-rays of SPring-8 to detect, on the vacuum side (through the thin membrane), the photoelectrons that have been emitted at the interface between the thin Si membrane window (solid) and the liquid. With this system, the group succeeded in in situ observation of potential-induced Si oxide growth in water.

The research results are expected to further elucidate the process at solid/liquid interfaces of major energy devices such as rechargeable batteries and fuel cells. At the same time, they are expected to contribute to the development and better performance of important parts such as cell electrodes and catalyst materials as a result of clarifying the reaction mechanism and problems in existing materials. In particular, quantitative investigation of the composition and oxidation states of interfaces, which was difficult in the past, becomes possible, which helps illuminate the deterioration mechanism of electrodes and electrolytes through identification of side reactions and the products of the reactions. Also, since XPS has been used for materials design and development in diverse fields including the industrial field and the medical field, the research results are expected to contribute to elucidating the mechanism of a broad range of phenomena in which interface reactions play an important role in those fields.

This research was conducted as part of the “Program for Development of Environmental Technology using Nanotechnology” entrusted by the Ministry of Education, Culture, Sports, Science and Technology, and as part of the “Phase Interfaces for Highly Efficient Energy Utilization” research domain (Research Supervisor: Nobuhide Kasagi) of Individual Type Research (PRESTO) of the JST Strategic Basic Research Program, and the research results were published in the online preliminary edition of Applied Physics Letters, an applied physics journal published by the American Institute of Physics, at 3:00 a.m., September 13, 2013 (JST).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/10/p201309180.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>