Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s First Success in In Situ Tracking of Electrochemical Reactions at Solid/Liquid Interfaces by Photoelectron Spectroscopy

31.10.2013
The results may elucidate the process at solid/liquid interfaces of energy devices like rechargeable batteries and fuel cells. It will also contribute to the development and performance of cell electrodes and catalyst materials.
National Institute for Materials Science (NIMS)
Japan Science and Technology Agency
A research group led by NIMS GREEN and JST, in collaboration with WPI-MANA and the Synchrotron X-ray Station at SPring-8, developed a new measurement system using high-energy X-rays of SPring-8 and a Si thin-membrane window. Through this achievement, the group succeeded for the first time in the world in tracking electrochemical reactions at solid/liquid interfaces in situ by X-ray photoelectron spectroscopy, which could only be used for measurement in a vacuum in the past.

Layout of the In Situ XPS Measurement System

A research group led by Prof. Dr. Kohei Uosaki, Research Manager of the Batteries and Fuel Cells Field at the Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) of the National Institute for Materials Science (NIMS) and Dr. Takuya Masuda, Researcher of the Precursory Research for Embryonic Science and Technology (PRESTO) program at the Japan Science and Technology Agency (JST), in collaboration with NIMS International Center for Materials Nanoarchitectonics (WPI-MANA) and the Synchrotron X-ray Station at SPring-8, developed a new measurement system using high-energy X-rays of SPring-8 and a silicon (Si) thin-membrane window. Through this achievement, the group succeeded for the first time in the world in tracking electrochemical reactions at solid/liquid interfaces in situ by X-ray photoelectron spectroscopy (XPS), which could only be used for measurement in a vacuum in the past.

A solid/liquid interface is an important part that converts and uses energy in familiar energy devices, such as fuel cells and solar cells. Recent research and development which aims to maximize the efficiency of energy use faces the need to break away from materials development dependent on empirical rules and to adopt clear evaluation methods that enable strategic materials design. Accordingly, there has been a strong desire for methods to directly observe and measure the dynamic behavior of reactions at solid/liquid interfaces in the environment where the reactions are taking place (in situ). Meanwhile, XPS is a method to investigate the surface species and oxidation states of the surface of a substance by irradiating the substance with X-rays and analyzing the energy of the photoelectrons emitted from the elements on the surface. Conventionally, XPS could only be used for measurement in a vacuum, and could not be used to directly observe the reactions at solid/liquid interfaces in situ.

The research group succeeded in observing the electrochemical reactions at a solid/liquid interface in a non-vacuum environment in situ by having high-energy synchrotron X-rays of SPring-8 penetrate through a thin Si membrane window with a thickness of 15 nm. Specifically, the group developed a measurement system that uses a thin Si membrane as a window for transmitting X-rays and photoelectrons, as a barrier separating a vacuum and a liquid, and as an electrode for electrochemical reactions, and uses the high-energy synchrotron X-rays of SPring-8 to detect, on the vacuum side (through the thin membrane), the photoelectrons that have been emitted at the interface between the thin Si membrane window (solid) and the liquid. With this system, the group succeeded in in situ observation of potential-induced Si oxide growth in water.

The research results are expected to further elucidate the process at solid/liquid interfaces of major energy devices such as rechargeable batteries and fuel cells. At the same time, they are expected to contribute to the development and better performance of important parts such as cell electrodes and catalyst materials as a result of clarifying the reaction mechanism and problems in existing materials. In particular, quantitative investigation of the composition and oxidation states of interfaces, which was difficult in the past, becomes possible, which helps illuminate the deterioration mechanism of electrodes and electrolytes through identification of side reactions and the products of the reactions. Also, since XPS has been used for materials design and development in diverse fields including the industrial field and the medical field, the research results are expected to contribute to elucidating the mechanism of a broad range of phenomena in which interface reactions play an important role in those fields.

This research was conducted as part of the “Program for Development of Environmental Technology using Nanotechnology” entrusted by the Ministry of Education, Culture, Sports, Science and Technology, and as part of the “Phase Interfaces for Highly Efficient Energy Utilization” research domain (Research Supervisor: Nobuhide Kasagi) of Individual Type Research (PRESTO) of the JST Strategic Basic Research Program, and the research results were published in the online preliminary edition of Applied Physics Letters, an applied physics journal published by the American Institute of Physics, at 3:00 a.m., September 13, 2013 (JST).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/10/p201309180.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>