Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s First Time-controlled Molecular Self-Organization

11.12.2014

Development of new material capable of autonomous molecular organization in accordance with preprogramming

At Japan's National Institute for Materials Science (Sukekatsu Ushioda, president), Senior Researcher Kazunori Sugiyasu and co-workers (Polymer Materials Unit [Izumi Ichinose, unit director], Advanced Key Technologies Division) developed a method for preprogramming the timing of molecules to initiate self-organization by mixing molecules with modified side chains.


(a) Previously reported porphyrin molecule 1; (b) two kinds of self-organization in which porphyrin molecule 1 is able to take part. A particulate structure is formed early, but that disappears with time and then a fibrous structure is formed; (c) self-organization involving molecule 1 to form a fibrous structure begins in about four hours.

Copyright : National Institute for Materials Science (NIMS)

The results of this research will be published in the German Chemical Society’s journal “Angewandte Chemie International Edition” in the near future. (S. Ogi, T. Fukui, M. L. Jue, M. Takeuchi, K. Sugiyasu, Article title: “Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design” Angew. Chem. Int. Ed., DOI: 10.1002/anie.201407302)

Molecular self-organization is widely observed in nature, and is a critical phenomenon in terms of developing systems that perform complex functions as seen in such natural mechanisms as photosynthesis and neurocircuits. Attempts have been made to develop new materials capable of executing advanced functions using the principle behind the phenomenon of molecular self-organization.

However, due to the spontaneous nature of molecular self-organization, it is extremely difficult to control the phenomenon by design. In particular, almost no research had been conducted to control the timing of the self-organization phenomenon including control of when to initiate it.

Recently, we conducted research using a molecule that can form two types of self-organized structures. One type of the self-organized structures was quickly formed but was energetically unstable; therefore, after a certain period of time elapsed, the other type of the self-organized structures, which was energetically more stable, was eventually formed.

By modifying the side chains of the molecule, thereby inverting the energy stability levels between the two types of self-organized structures, we were able to synthesize a new type of molecule that only forms the former self-organized structure. By changing the mixing ratios between the original and new molecules, we succeeded for the first time in the world in controlling the timing at which an energetically stable self-organized structure begins to form.

Controlling such timing is similar to the mechanism behind the biological clock in organisms from the viewpoint that in both cases, such time-controlling process is carried out by a network of molecules consisting of several chemical species.

Self-organization is a vital concept in diverse fields such as materials science, nanotechnology and biotechnology, and is attracting much attention as a new method of synthesizing materials. By applying the method we developed in this research, we intend to develop advanced systems that are capable of emitting light or changing electrical conductivity at desirable timings. In the future, we hope to develop smart materials that autonomously function corresponding to the passing of time, like biomolecular systems do.

This research was funded by the Japan Society for the Promotion of Science’s grant-in-aid for scientific research on innovative areas, “dynamical ordering of biomolecular systems for creation of integrated functions” (Koichi Kato, Project Leader, National Institutes of Natural Sciences), and “π-system figuration” (Takanori Fukushima, Project Leader, Tokyo Institute of Technology).


Associated links
NIMS article

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>