Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's first successful visualisation of key coenzyme

16.04.2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat could ultimately facilitate the diagnosis of cancer and liver dysfunction and help to elucidate the mechanisms of neurological disorders.  

A Japanese research team led by Drs. Hirokazu Komatsu and Katsuhiko Ariga of the International Center for Materials Nanoarchitectonics, in collaboration with Professors Yutaka Shido and Kotaro Oka of Keio University, have developed the world's first method for visualising the coenzyme nicotine-adenine dinucleotide derivative (NAD(P)H) inside cells.


Fluorescent imaging of HeLa cell

Copyright : National Institute for Materials Science (NIMS)

Fluorescent imaging – used to identify and visualise cellular components by attaching a fluorescent substance – is an effective method for exploring vital phenomena.

Until now, however, the development of a method for visualising NAD(P)H, which plays a key role in various vital phenomena and diseases, has proven elusive due to the low reactivity of NAD(P)H to fluorescent substances.

The research group succeeded in developing a new fluorescent probe that specifically reacts with NAD(P)H, and achieved fluorescent imaging of NAD(P)H for the first time in the world, through the combined use of the new probe and an artificial promoter capable of promoting reactivity.

The new NADH imaging method could be used for various purposes, including: promoting early detection and supporting cancer treatment by detecting NADH leakage from invasive cancers; diagnosing liver dysfunction by detecting excessive NADH caused by cirrhosis of the liver; and elucidating the lack of NADH in patients with brain or neurological diseases such as Alzheimer's Disease, depression, and Parkinson's Disease.

The new method will also prove of great value in other life sciences research.

The research results will be published in a German scientific journal, Angewandte Chemie International Edition.

Associated links

http://www.nims.go.jp/eng/

Mikiko Tanifuji | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: NADH coenzyme detecting diseases fluorescent liver neurological phenomena reactivity substances

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>