Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s first commercial nanostructured bulk metal

11.11.2013
In a paper published in the Science and Technology of Advanced Materials, Bhadeshia introduces the world’s first bulk nanostructured metal in commercial production.

When we think of structural materials, we usually imagine something big, strong and bulky, like steel beams in bridges and buildings, and while we are becoming familiar with composites reinforced with carbon nanotubes and nanofibers, it is yet hard to believe that the structure of bulk homogenous metals can be controlled at the nanoscale with commercial-scale production.


Large-scale manufacture of nanostructured steel shafts. Copyright : Photograph courtesy of Rolls Royce Plc.

In a paper published in the Science and Technology of Advanced Materials, Bhadeshia introduces the world’s first bulk nanostructured metal in commercial production. The nanostructure-controlled high-strength bainitic steel, where the thickness of bainitic ferrite platelets is controlled between 20 and 50 nm is shown in the figures below.

The review paper explains why nanostructure plays an important role in strengthening materials, and the conditions required to design and develop such “nanostructured” materials. In particular, the biggest challenge is to keep the production cost as low as that of bottled water.

So, what magic is needed to produce low-cost nanostructured bulk steel? The answer is simple – keep the bulk at 200 °C for 10 days, which will lead to the formation of plate-like bainitic structure. One deficiency of the material is that it is yet difficult to weld, but the author lays out possible solutions to overcome this.

Research paper: The first bulk nanostructured metal
H K D H Bhadeshia
Sci. Technol. Adv. Mater. Vol. 14 (2013) p. 014202.
Published in March 11, 2013 at http://iopscience.iop.org/1468-6996/14/1/014202
doi:10.1088/1468-6996/14/1/014202
Media contact:
Mikiko Tanifuji,
National Institute for Materials Science, Tsukuba, Japan
E-mail: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494
Journal information
Science and Technology of Advanced Materials

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>