Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World's First Diamond Nanoelectromechanical Switch Toward New Functionality of Diamonds and ...

... Nano/Microelectromechanical Systems

Researchers at NIMS have succeeded in the batch fabrication of suspended structures (cantilevers and bridges) of single crystal diamond for nano/micro electromechanical systems.

Dr. Meiyong Liao, a Senior Researcher of Sensor Materials Center (Managing Director: Hajime Haneda), National Institute for Materials Science (President: Sukekatsu Ushioda), cooperated with his colleagues, succeeded in the batch fabrication of suspended structures (cantilevers and bridges) of single crystal diamond for nano/micro electromechanical systems (NEMS/MEMS). Based on this process, they achieved in the world the first single crystal diamond NEMS switch.

The NEMS switch has the advantages of low-leakage current, low-power consumption and sharp on/off ratio in comparison with the conventional semiconductor devices. Most of the existing NEMS/MEMS switches are based on silicon or metal materials, which have the drawbacks of poor mechanical, chemical, and thermal stability, poor reliability and durability. Diamond is the ideal material for NEMS/MEMS due to the highest elastic modulus, mechanical hardness, thermal conductivity, and variable electrical conductivity from insulator to conductor. However, due to the difficultly in fabricating suspended structures of single crystal diamond, the development of single crystal diamond NEMS/MEMS devices has been a challenge.

The NIMS research team developed a process for fabricating suspended single crystal diamond structures by locally forming a graphite sacrificial layer in a single crystal diamond substrate by high energy ion implantation, followed by the growth of a diamond epilayer with electrical conductivity by microwave plasma chemical vapor deposition method (MPCVD) and the removal of the graphite sacrificial layer. As a further development of this technique, the group also succeeded for the first time in fabricating NEMS switching devices with a transistor-like structure comprising 3 electrodes.

The leakage current of the developed diamond NEMS switch is very low, and the power consumption is less than 10pW (picowatt). The devices exhibit high reproducibility, high reliability and no surface stiction. Stable operation of the diamond NEMS switch in a high temperature environment (250‹C) was also confirmed. The Youngfs modulus of the moveable cantilever structure was measured to be 1100GPa, which is close to the value of bulk diamond single crystals. Thus, high-speed (gigahertz) switching operation can be expected.

In comparison with the existing MEMS switches, the diamond NEMS switches are expected to show greatly improved functions, including reliability, lifetime, speed, and electrical handling capacity, etc. The developed devices can be applied as microwave switch for next-generation wireless communications and logic circuit under harsh environments. These research results also establish the infrastructure for diamond NEMS/MEMS with novel functions, opening the way for the development of various chemical, physical, and mechanical sensors.

For more detail contact:

Meiyong Liao (English inquiry)
Optical Sensor Group, Sensor Materials Center
National Institute for Materials Science
TEL: +81-29-860-4311
FAX: +91-29-851-4005
Yasuo Koide (Japanese inquiry)

Mikiko Tanifuji | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>