Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wonder Material Silicene Still Stands Just Out of Reach

13.01.2015

Silicene is the thinnest form of silicon. It is metallic, has graphene-like mobile carriers and can behave like a semiconductor. The wonder material could lead to even smaller electronics but challenges remain in this review published in the Science and Technology of Advanced Materials.

Scientists in Japan compared the properties of a hypothetical freestanding one-atom-thick layer of silicon to a similar sheet developed on a metal substrate. Although promising, this second “epitaxial” form shows important differences. Turning the hypothetical material into a reality still remains a major challenge, 20 years after it was first reported.


Structures and structural parameters of (a) diamond-structured silicon, (b) graphene, (c) disilene and (d) hypothetical, freestanding silicene

Copyright : Science and Technology of Advanced Materials

In 1994, scientists published their first theoretical report on the thinnest possible form of silicon. Among many other uses, silicon is incorporated as a semiconductor in integrated circuits, the basis of most computers.

But it was only ten years later in 2004, when another material, graphene, was reported, that scientists started showing a real interest, and eventually named the material, “silicene”.

Graphene is a one-atom-thick layer of carbon that has been shown to host the fastest carriers of electricity yet found. Compared with silicon, however, graphene is not a semi-conductor because it can’t switch between conducting and not conducting states. This makes it very difficult to apply it in a switching device such as a transistor.

This is why silicene is so exciting. In its freestanding form, this one-atom-thick layer of silicon atoms has graphene-like mobile carriers as well and is metallic. On the other hand, for instance by applying strain or an electric field, it could also be turned to behave like a semiconductor.

This is because the structure could be easily modified or switched on the atomic scale. In addition, it would be compatible with already existing silicon-based circuitry. This is envisaged to lead to the development of even smaller electronics than those currently on the market.

Because of its exciting potential, the experimental demonstration of the existence of silicene was highly anticipated. In 2012, several groups reported successfully developing “epitaxial” silicene: silicene sheets formed on metallic substrates.

A team of Japanese scientists compared the characteristic properties of theoretical freestanding silicene to epitaxial silicene they had produced on a zirconium diboride substrate. They found that the crystal structure of epitaxial silicene was strongly influenced by its metal substrate, thus resulting in electronic properties different from those predicted for the hypothetical freestanding form.

The synthesis of freestanding silicene remains a major challenge and many of the properties of its epitaxial form are not yet fully understood. However, the team of Japanese scientists joined by a few other groups worldwide will further work on the understanding of the formation mechanism of epitaxial silicene and its interaction with the substrate. Based on the deep understanding of this matter, present and future work is anticipated to result in the required developments such as the formation of silicene on an insulating platform and its successful encapsulation. This would then lead to practical applications of the material.


For further information contact:
Associate Professor Yukiko Yamada-Takamura
School of Materials Science
Japan Advanced Institute of Science and Technology
Nomi, Japan
Tel: +81-761-51-1570
E-mail: yukikoyt@jaist.ac.jp


Associated links
Link to research paper on Science and Technology of Advanced Materials

Journal information

Yukiko Yamada-Takamura and Rainer Friedlein 2014 Sci. Technol. Adv. Mater. 15 064404 doi:10.1088/1468-6996/15/6/064404

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.jaist.ac.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>