Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


With 'ribbons' of graphene, width matters


A narrow enough ribbon will transform a high-performance conductor into a semiconductor

Using graphene ribbons of unimaginably small widths – just several atoms across – a group of researchers at the University of Wisconsin-Milwaukee (UWM) has found a novel way to "tune" the wonder material, causing the extremely efficient conductor of electricity to act as a semiconductor.

Yaoyi Li (foreground) and Mingxing Chen, UWM physics postdoctoral researchers, display an image of a ribbon of graphene 1 nanometer wide. In the image, achieved with a scanning-tunneling microscope, atoms are visible as "bumps."

Credit: Troye Fox, UWM Photo Services

In principle, their method for producing these narrow ribbons – at a width roughly equal to the diameter of a strand of human DNA – and manipulating the ribbons' electrical conductivity could be used to produce nano-devices.

Graphene, a one-atom-thick sheet of carbon atoms, is touted for its high potential to yield devices at nanoscale and deliver computing at quantum speed. But before it can be applied to nanotechnology, researchers must first find an easy method of controlling the flow of electrons in order to devise even a simple on-off switch.

"Nano-ribbons are model systems for studying nanoscale effects in graphene, but obtaining a ribbon width below 10 nanometers and characterizing its electronic state is quite challenging," says Yaoyi Li, a UWM physics postdoctoral researcher and first author of a paper published July 2 in the journal Nature Communications.

By imaging the ribbons with scanning-tunneling microscopy, researchers have confirmed how narrow the ribbon width must be to alter graphene's electrical properties, making it more tunable.

"We found the transition happens at three nanometers and the changes are abrupt," says Michael Weinert, a UWM theoretical physicist who worked on the Department of Energy-supported project with experimental physicist Lian Li. "Before this study, there was no experimental evidence of what width the onset of these behaviors is."

The team also found that the narrower the ribbon becomes, the more "tunable" the material's behaviors. The two edges of such a narrow ribbon are able to strongly interact, essentially transforming the ribbon into a semiconductor with tunable qualities similar to that of silicon.

The first hurdle

Current methods of cutting can produce ribbon widths of five nanometers across, still too wide to achieve the tunable state, says Yaoyi Li. In addition to producing narrower ribbons, any new strategy for cutting they devised would also have to result in a straight alignment of the atoms at the ribbon edges in order to maintain the electrical properties, he adds.

So the UWM team used iron nanoparticles on top of the graphene in a hydrogen environment. Iron is a catalyst that causes hydrogen and carbon atoms to react, creating a gas that etches a trench into the graphene. The cutting is accomplished by precisely controlling the hydrogen pressure, says Lian Li.

The iron nanoparticle moves randomly across the graphene, producing ribbons of various widths – including some as thin as one nanometer, he says. The method also produces edges with properly aligned atoms.

One limitation exists for the team's cutting method, and that has to do with where the edges are cut. The atoms in graphene are arranged on a honeycomb lattice that, depending on the direction of the cut produces either an "armchair-shaped" edge or a "zigzag" one. The semiconducting behaviors the researchers observed with their etching method will only occur with a cut in the zigzag configuration.

Manipulating for function

When cut, the carbon atoms at the edges of the resulting ribbons have only two of the normal three neighbors, creating a kind of bond that attracts hydrogen atoms and corrals electrons to the edges of the ribbon. If the ribbon is narrow enough, the electrons on opposite sides can still interact, creating a semiconductive electrical behavior, says Weinert.

The researchers are now experimenting with saturating the edges with oxygen, rather than hydrogen, to investigate whether this changes the electrical behavior of the graphene to that of a metal.

Adding function to graphene nano-ribbons through this process could make possible the sought-after goal of atomic-scale components made of the same material, but with different electrical behaviors, says Weinert.

Lian Li | Eurek Alert!

More articles from Materials Sciences:

nachricht New Artificial Cells Mimic Nature’s Tiny Reactors
09.10.2015 | Department of Energy, Office of Science

nachricht Reliable in-line inspections of high-strength automotive body parts within seconds
09.10.2015 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>