Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wheel in a corset

29.09.2010
Just imagine your car suddenly comes to a halt on a quiet country road, and it's only four years old. This is not a pleasant thought. A breakdown is expensive.

Not to mention the safety risk to the occupants – because the breakdown was caused by the extremely light plastic wheels so highly praised by the car salesman. One of them has broken.


This wheel made of fiber-reinforced plastic is particularly light and exhibits high structural durability. Credit: Fraunhofer LBF

»Such a scenario must, of course, never happen in reality,« states Prof. Dr.-Ing. Andreas Büter from the Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt. The experts there specialize in operational strength testing of plastics in general and plastic wheels in particular.

To create the fundamentals for the production of lightweight and yet safe and reliable components they launched the High-Strength Plastic Structures project in cooperation with five other Fraunhofer institutes. »The aim was to provide the conditions and the tools for the operationally reliable design of extremely light safety parts made of SMC (sheet molding compound) material which could be produced on an ongoing basis in medium to large volumes.

SMC is a fiber-reinforced composite material which mainly consists of inorganic constituents,« explains project manager Professor Büter. »Up to now SMC has only been used for secondary parts of the bodywork such as the bonnet or doors,« states Büter. »The purpose of our project was to clarify whether SMC is also suitable for safety-relevant primary parts.« SMC is superior to metal in several ways. It is not only lighter but also exhibits an excellent mass-to-strength ratio. What's more, it is cheap to produce in medium to large quantities.

But what are the material properties of SMC? How are the fibers oriented? What production methods are suitable for processing this material? Are there any air conclusions? What stresses and loadings can SMC car wheels withstand? The research scientists have looked into these and other questions. »On our test stands we have simulated for example how the wheels and suspension of a car behave on a rough road, in forward motion and reversing, and how long the components can endure these conditions,« states Andreas Büter, describing the tests conducted at the LBF. After three years of research work the scientists can now present the results. On conclusion of the project Büter highlighted an important finding: »If correctly processed, fiber-reinforced plastics are highly damage-tolerant and distinctly superior to aluminum wheels.«

And what happens now? In cooperation with the industry the researchers would like to create a wheel based on the developed prototype which can withstand high stresses and loadings. It would feature a local reinforcement of continuous fibers. »That would act like a supporting corset for the wheel,« the project manager adds, outlining his team's vision. A prototype of the lightweight wheel will be on display at the Composites Europe trade show from September 14 to 16 in Essen (Hall 12, Stand C33).

Andreas Bueter | EurekAlert!
Further information:
http://www.fraunhofer.de

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>