Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What makes the best possible summer sportswear?


A recently completed research project at the Hohenstein Institute shows how to make sports textiles with outstanding sun protection and wear comfort , and offers design tips for producers.

As part of a research project on "The total energy transmittance of clothing" (IGF No. 17655 N), the Hohenstein Institute has been researching how the structure of the textile and the length of the garment affect people's thermal comfort in intense sunlight. From their work, the scientists have derived some design tips on how to make sportswear that provides the best possible protection from harmful UV radiation and the heat of the sun, while at the same time being very comfortable to wear. The results give sportswear producers and retailers the opportunity to open up new product segments with this kind of improved garment. For end users, these textiles offer a better way of protecting themselves from skin cancers such as "white skin cancer".

Following evaluation of the laboratory tests, wearing trials were carried out using subjects, to further validate the optimised test samples.

© Hohenstein Institute

The sportswear garments made with long and short sleeves and legs were worn by the thermal manikin "Charlie" and exposed to a specific level of thermal radiation.

© Hohenstein Institute

Current problems with sports textiles in summer

In summer, endurance athletes and people who work mainly outdoors are exposed to direct sunlight for several hours at a time and so they have to protect themselves from harmful UV radiation. Long-sleeved clothing and sun blocking creams do offer some protection from UV radiation, but during intense physical or sporting activity they reduce the dissipation of heat through the skin – and this ultimately affects the wearer's performance. On the other hand, short-sleeved clothing allows sweat to evaporate and so cools the body down, but it offers no protection from either carcinogenic UV radiation or infrared thermal radiation.

Starting point and structure

The aim of the research was to examine systematically the relationship between thermoregulation and sun protection. The innovative concept at the heart of the research project was that the scientists would, for the first time, study the effect of textile construction (fibre material, colour, finishing treatment) on clothing physiology properties, UV protection and IR protection.

In the first step, the researchers selected six different textile base materials in which the main fibres were polyester (PES), polyamide (PA) and Lyocell/polypropylene (CLY/PP). Then, in the next step, these were treated with red and black dyes and three UV protection agents.

The textile samples were tested for their UV protection under UV Standard 801 and for the protection they offered against hot sunshine in accordance with DIN EN 410 (total energy transmittance), and also with regard to their heat and moisture management, with the help of the Hohenstein Skin Model and skin sensorial measuring devices.

In the next step, the samples that were particularly good at thermoregulation were made into shirts and trousers with sleeves and legs of different lengths. Then these garments, worn by a thermal manikin, were exposed to a specific amount of heat radiation to simulate warming by the sun - which varied depending on the length of the garment. Finally, following evaluation of the laboratory tests, wearing trials were carried out using volunteers, to further validate the best test samples.

Results: how to make the best possible summer sportswear

It emerged that the ideal blend of fibres should consist of CLY/PP/PA, because fabrics made of CLY/PP are very comfortable to wear and, when combined with PA fibres, also offer a high degree of UV protection. Dyeing the textiles red or black significantly increased the UV protection compared with the white samples, and proved to be more effective than applying the chosen UV-protection agents to the textile.

At the same time, less heat passes through the red and black textiles, but this is at the cost of more heat being absorbed by the textile. In summer and in direct sunshine, sportsmen and -women should opt for loose clothing, because this means the heat that is absorbed is not transmitted straight on to the skin.

Long-sleeved clothing offers better UV protection than short sleeves, because more of the body is covered. However, since the arms are more exposed to the sun than the legs, ideally you should combine long-sleeved sports tops with shorts.

To find out more information about this research project and view the detailed research report, please contact the project manager, sports engineer Martin Harnisch (

Weitere Informationen:

Marianna Diener | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>