Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes the best possible summer sportswear?

15.02.2016

A recently completed research project at the Hohenstein Institute shows how to make sports textiles with outstanding sun protection and wear comfort , and offers design tips for producers.

As part of a research project on "The total energy transmittance of clothing" (IGF No. 17655 N), the Hohenstein Institute has been researching how the structure of the textile and the length of the garment affect people's thermal comfort in intense sunlight. From their work, the scientists have derived some design tips on how to make sportswear that provides the best possible protection from harmful UV radiation and the heat of the sun, while at the same time being very comfortable to wear. The results give sportswear producers and retailers the opportunity to open up new product segments with this kind of improved garment. For end users, these textiles offer a better way of protecting themselves from skin cancers such as "white skin cancer".


Following evaluation of the laboratory tests, wearing trials were carried out using subjects, to further validate the optimised test samples.

© Hohenstein Institute


The sportswear garments made with long and short sleeves and legs were worn by the thermal manikin "Charlie" and exposed to a specific level of thermal radiation.

© Hohenstein Institute

Current problems with sports textiles in summer

In summer, endurance athletes and people who work mainly outdoors are exposed to direct sunlight for several hours at a time and so they have to protect themselves from harmful UV radiation. Long-sleeved clothing and sun blocking creams do offer some protection from UV radiation, but during intense physical or sporting activity they reduce the dissipation of heat through the skin – and this ultimately affects the wearer's performance. On the other hand, short-sleeved clothing allows sweat to evaporate and so cools the body down, but it offers no protection from either carcinogenic UV radiation or infrared thermal radiation.

Starting point and structure

The aim of the research was to examine systematically the relationship between thermoregulation and sun protection. The innovative concept at the heart of the research project was that the scientists would, for the first time, study the effect of textile construction (fibre material, colour, finishing treatment) on clothing physiology properties, UV protection and IR protection.

In the first step, the researchers selected six different textile base materials in which the main fibres were polyester (PES), polyamide (PA) and Lyocell/polypropylene (CLY/PP). Then, in the next step, these were treated with red and black dyes and three UV protection agents.

The textile samples were tested for their UV protection under UV Standard 801 and for the protection they offered against hot sunshine in accordance with DIN EN 410 (total energy transmittance), and also with regard to their heat and moisture management, with the help of the Hohenstein Skin Model and skin sensorial measuring devices.

In the next step, the samples that were particularly good at thermoregulation were made into shirts and trousers with sleeves and legs of different lengths. Then these garments, worn by a thermal manikin, were exposed to a specific amount of heat radiation to simulate warming by the sun - which varied depending on the length of the garment. Finally, following evaluation of the laboratory tests, wearing trials were carried out using volunteers, to further validate the best test samples.

Results: how to make the best possible summer sportswear

It emerged that the ideal blend of fibres should consist of CLY/PP/PA, because fabrics made of CLY/PP are very comfortable to wear and, when combined with PA fibres, also offer a high degree of UV protection. Dyeing the textiles red or black significantly increased the UV protection compared with the white samples, and proved to be more effective than applying the chosen UV-protection agents to the textile.

At the same time, less heat passes through the red and black textiles, but this is at the cost of more heat being absorbed by the textile. In summer and in direct sunshine, sportsmen and -women should opt for loose clothing, because this means the heat that is absorbed is not transmitted straight on to the skin.

Long-sleeved clothing offers better UV protection than short sleeves, because more of the body is covered. However, since the arms are more exposed to the sun than the legs, ideally you should combine long-sleeved sports tops with shorts.

To find out more information about this research project and view the detailed research report, please contact the project manager, sports engineer Martin Harnisch (m.harnisch@hohenstein.de).

Weitere Informationen:

http://www.hohenstein.de/en/inline/pressrelease_123136.xhtml

Marianna Diener | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>