Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water No Match for New Self-Healing Sticky Gel

31.01.2011
Universal solvent no match for new self-healing sticky gel

Scientists can now manufacture a synthetic version of the self-healing sticky substance that mussels use to anchor themselves to rocks in pounding ocean surf and surging tidal basins. A patent on how to make the substance is pending. Potential applications include use as an adhesive or coating for underwater machinery or in biomedical settings as a surgical adhesive or bonding agent for implants.

Inspiring the invention were the hair-thin holdfast fibers that mussels secrete to stick against rocks in lakes, rivers and oceans. “Everything amazingly just self-assembles underwater in a matter of minutes, which is a process that’s still not understood that well,” said Niels Holten-Andersen, a postdoctoral scholar with chemistry professor Ka Yee Lee at the University of Chicago.

Holten-Andersen, Lee and an international team of colleagues are publishing the details of their invention this week in the Proceedings of the National Academy of Sciences Early Edition. Holten-Andersen views the evolution of life on Earth as “this beautiful, amazingly huge experiment” in which natural selection has enabled organisms to evolve an optimal use of materials over many millions of years.

“The mussels that live right on the coast where the waves really come crashing in have had to adapt to that environment and build their materials accordingly,” he said.

Many existing synthetic coatings involve a compromise between strength and brittleness. Those coatings rely on permanent covalent bonds, a common type of chemical bond that is held together by two atoms that share two or more electrons. The bonds of the mussel-inspired material, however, are linked via metals and exhibit both strength and reversibility.

“These metal bonds are stable, yet if they break, they automatically self-heal without adding any extra energy to the system,” Holten-Andersen said.

A key ingredient of the material is a polymer, which consists of long chains of molecules, synthesized by co-author Phillip Messersmith of Northwestern University. When mixed with metal salts at low pH, the polymer appears as a green solution. But the solution immediately transforms into a gel when mixed with sodium hydroxide to change the pH from high acidity to high alkalinity.

“Instead of it being this green solution, it turned into this red, self-healing sticky gel that you can play with, kind of like Silly Putty,” he said. Holten-Andersen and his colleagues found that the gel could repair tears within minutes.

“You can change the property of the system by dialing in a pH,” said Ka Yee Lee, a professor in chemistry at UChicago and co-author of the PNAS paper. The type of metal ion (an electrically charged atom of, for example. iron, titanium or aluminum) added to the mix provides yet another knob for tuning the material’s properties, even at the same pH.

“You can tune the stiffness, the strength of the material, by now having two knobs. The question is, what other knobs are out there?” Lee said.

This week’s PNAS study reports the most recent in a series of advances related to sticky mussel fibers that various research collaborations have posted in recent years. A 2006 PNAS paper by Haeshin Lee, now of the Korea Advanced Institute of Technology, Northwestern’s Phillip Messersmith and UChicago’s Norbert Scherer demonstrated an elusive but previously suspected fact. Using atomic-force microscopy, they established that an unusual amino acid called “dopa” was indeed the key ingredient in the adhesive protein mussels use to adhere to rocky surfaces.

Last year in the journal Science, scientists at Germany’s Max Planck Institute documented still more details about mussel-fiber chemical bonds. The Max Planck collaboration included Holten-Andersen and Herbert Waite of the University of California, Santa Barbara. Holten-Andersen began researching the hardness and composition of mussel coatings as a graduate student in Waite’s laboratory.

“Our aspiration is to learn some new design principles from nature that we haven’t yet actually been using in man-made materials that we can then apply to make man-made materials even better,” he said.

Being able to manufacture green materials is another advantage of drawing inspiration from nature. “A lot of our traditional materials are hard to get rid of once we’re done with them, whereas nature’s materials are obviously made in a way that’s environmentally friendly,” Holten-Andersen said.

Citation: “pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli,” by Niels Holten-Andersen, Matthew J. Harrington, Henrik Birkedal, Bruce P. Lee, Phillip B. Messersmith, Ka Yee C. Lee, and J. Herbert Waite, Proceedings of the National Academy of Sciences Early Edition, Jan. 24-28, 2011.

Funding: National Science Foundation, National Institutes of Health, National Aeronautics and Space Administration, and Danish Council for Independent Research/National Sciences.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

Further reports about: Gel Max Planck Institute PNAS Water Snake chemical bond self-healing

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>