Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vigilant windows

19.03.2009
Is someone sneaking around in front of the window trying to break in? Windows and doors are now being sensitized to suspicious movements: they can detect whether and how quickly something is moving. If it is a person, the system sounds an alarm.

It is 6 p.m. and the museum is closing down for the night. The building’s alarm system is switched on and the security guard does his rounds.

A novel motion sensor developed by the Fraunhofer Institutes for Applied Polymer Research IAP in Potsdam-Golm and for Computer Architecture and Software Technology FIRST in Berlin could provide even more security in future, enabling window panes and glass doors to detect movements thanks to a special coating. If anything changes in front of the pane, or someone sneaks up to it, an alarm signal is sent to the security guard.

“The glass is coated with a fluorescent material,” explains IAP group manager Dr. Burkhard Elling. “The coating contains nanoparticles that convert light into fluorescent radiation.” The principle is as follows: The invisible light of a UV lamp “illuminates” the window panes and generates fluorescent radiation in the coating. This radiation is channeled to the edges of the window, where it is detected by sensors. Simple applications require only one sensor. Similarly to a light barrier, if someone steps into the light of the lamp less light reaches the coating and less fluorescent radiation is produced.

If several sensors are installed on all four sides of the window frame, conclusions can be drawn from the data as to how fast and in what direction an object is moving. Its size, too, can be estimated by the sensors. Is it a small creature such as a bird or is it a person? The threshold for the alarm can be set, so that moving objects the size of birds for instance do not trigger an alarm.

Likewise, the sensors do not react to light from passing cars, as the researchers at FIRST have developed a software application that can interpret different light signals. This enables the system to easily distinguish between the frequency of the UV lamp and the slowly changing light from a passing headlight. The system has further advantages: it does not infringe on anybody’s personal rights, as it only detects the change in radiation, and not who triggered it.

It is also cost-efficient, because the coating can be sprayed onto the windows by airbrush or glued on as a film. A demonstrator system already exists, and the researchers now plan to optimize the dyes and their concentration in the coating.

Dr. rer. nat. Burkhard Elling | Fraunhofer Gesellschaft
Further information:
http://www.iap.fraunhofer.de
http://www.first.fraunhofer.de

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>