Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vigilant windows

19.03.2009
Is someone sneaking around in front of the window trying to break in? Windows and doors are now being sensitized to suspicious movements: they can detect whether and how quickly something is moving. If it is a person, the system sounds an alarm.

It is 6 p.m. and the museum is closing down for the night. The building’s alarm system is switched on and the security guard does his rounds.

A novel motion sensor developed by the Fraunhofer Institutes for Applied Polymer Research IAP in Potsdam-Golm and for Computer Architecture and Software Technology FIRST in Berlin could provide even more security in future, enabling window panes and glass doors to detect movements thanks to a special coating. If anything changes in front of the pane, or someone sneaks up to it, an alarm signal is sent to the security guard.

“The glass is coated with a fluorescent material,” explains IAP group manager Dr. Burkhard Elling. “The coating contains nanoparticles that convert light into fluorescent radiation.” The principle is as follows: The invisible light of a UV lamp “illuminates” the window panes and generates fluorescent radiation in the coating. This radiation is channeled to the edges of the window, where it is detected by sensors. Simple applications require only one sensor. Similarly to a light barrier, if someone steps into the light of the lamp less light reaches the coating and less fluorescent radiation is produced.

If several sensors are installed on all four sides of the window frame, conclusions can be drawn from the data as to how fast and in what direction an object is moving. Its size, too, can be estimated by the sensors. Is it a small creature such as a bird or is it a person? The threshold for the alarm can be set, so that moving objects the size of birds for instance do not trigger an alarm.

Likewise, the sensors do not react to light from passing cars, as the researchers at FIRST have developed a software application that can interpret different light signals. This enables the system to easily distinguish between the frequency of the UV lamp and the slowly changing light from a passing headlight. The system has further advantages: it does not infringe on anybody’s personal rights, as it only detects the change in radiation, and not who triggered it.

It is also cost-efficient, because the coating can be sprayed onto the windows by airbrush or glued on as a film. A demonstrator system already exists, and the researchers now plan to optimize the dyes and their concentration in the coating.

Dr. rer. nat. Burkhard Elling | Fraunhofer Gesellschaft
Further information:
http://www.iap.fraunhofer.de
http://www.first.fraunhofer.de

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>