Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Valuable, rare, raw earth materials extracted from industrial waste stream

16.12.2009
Fierce competition over raw materials for new green technologies could become a thing of the past, thanks to a discovery by scientists from the University of Leeds.

Researchers from Leeds' Faculty of Engineering have discovered how to recover significant quantities of rare-earth oxides, present in titanium dioxide minerals. The rare-earth oxides, which are indispensable for the manufacture of wind turbines, energy-efficient lighting, and hybrid and electric cars, are extracted or reclaimed simply and cheaply from the waste materials of another industrial process.

If taken to industrial scale, the new process could eventually shift the balance of power in global supply, breaking China's near monopoly on these scarce but crucial resources. China currently holds 95 per cent of the world's reserves of rare earth metals in a multi-billion dollar global market in which demand is growing steadily.

"These materials are also widely used in the engines of cars and electronics, defence and nuclear industries(1). In fact they cut across so many leading edge technologies, the additional demand for device related applications is set to outstrip supply," said Professor Animesh Jha, who led the research at Leeds.

"There is a serious risk that technologies that can make a major environmental impact could be held back through lack of the necessary raw materials – but hopefully our new process, which is itself much 'greener' than current techniques, could make this less likely."

Despite their name, the fifteen rare earth metals occur more commonly within the Earth's crust than precious metals such as gold and platinum, but their oxides are rarely found in sufficient concentrations to allow for commercial mining and purification. They are, however, found relatively frequently alongside titanium dioxide - a versatile mineral used in everything from cosmetics and medicines to electronics and the aerospace industries, which Professor Jha has been researching for the last eight years.

The Leeds breakthrough came as Professor Jha and his team were fine-tuning a patented industrial process they have developed to extract higher yields of titanium dioxide and refine it to over 99 per cent purity. Not only does the technology eliminate hazardous wastes, cut costs and carbon dioxide emissions, the team also discovered they can extract significant quantities of rare earth metal oxides as co-products of the refining process(2).

"Our recovery rate varies between 60 and 80 per cent, although through better process engineering we will be able to recover more in the future," says Professor Jha. "But already, the recovery of oxides of neodymium (Nd), cerium (Ce) and lanthanum (La), from the waste products - which are most commonly found with titanium dioxide minerals - is an impressive environmental double benefit."

The research has been funded by the Engineering and Physical Sciences Research Council (EPSRC), the former DTI's Sustainable Technology Programme and industrial sponsor, Cristal Global in US (formerly Millennium Inorganic Chemicals) through a PhD studentship for team member Graham Cooke.

Professor Animesh Jha | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>