Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Valuable, rare, raw earth materials extracted from industrial waste stream

16.12.2009
Fierce competition over raw materials for new green technologies could become a thing of the past, thanks to a discovery by scientists from the University of Leeds.

Researchers from Leeds' Faculty of Engineering have discovered how to recover significant quantities of rare-earth oxides, present in titanium dioxide minerals. The rare-earth oxides, which are indispensable for the manufacture of wind turbines, energy-efficient lighting, and hybrid and electric cars, are extracted or reclaimed simply and cheaply from the waste materials of another industrial process.

If taken to industrial scale, the new process could eventually shift the balance of power in global supply, breaking China's near monopoly on these scarce but crucial resources. China currently holds 95 per cent of the world's reserves of rare earth metals in a multi-billion dollar global market in which demand is growing steadily.

"These materials are also widely used in the engines of cars and electronics, defence and nuclear industries(1). In fact they cut across so many leading edge technologies, the additional demand for device related applications is set to outstrip supply," said Professor Animesh Jha, who led the research at Leeds.

"There is a serious risk that technologies that can make a major environmental impact could be held back through lack of the necessary raw materials – but hopefully our new process, which is itself much 'greener' than current techniques, could make this less likely."

Despite their name, the fifteen rare earth metals occur more commonly within the Earth's crust than precious metals such as gold and platinum, but their oxides are rarely found in sufficient concentrations to allow for commercial mining and purification. They are, however, found relatively frequently alongside titanium dioxide - a versatile mineral used in everything from cosmetics and medicines to electronics and the aerospace industries, which Professor Jha has been researching for the last eight years.

The Leeds breakthrough came as Professor Jha and his team were fine-tuning a patented industrial process they have developed to extract higher yields of titanium dioxide and refine it to over 99 per cent purity. Not only does the technology eliminate hazardous wastes, cut costs and carbon dioxide emissions, the team also discovered they can extract significant quantities of rare earth metal oxides as co-products of the refining process(2).

"Our recovery rate varies between 60 and 80 per cent, although through better process engineering we will be able to recover more in the future," says Professor Jha. "But already, the recovery of oxides of neodymium (Nd), cerium (Ce) and lanthanum (La), from the waste products - which are most commonly found with titanium dioxide minerals - is an impressive environmental double benefit."

The research has been funded by the Engineering and Physical Sciences Research Council (EPSRC), the former DTI's Sustainable Technology Programme and industrial sponsor, Cristal Global in US (formerly Millennium Inorganic Chemicals) through a PhD studentship for team member Graham Cooke.

Professor Animesh Jha | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>