Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Valuable, rare, raw earth materials extracted from industrial waste stream

16.12.2009
Fierce competition over raw materials for new green technologies could become a thing of the past, thanks to a discovery by scientists from the University of Leeds.

Researchers from Leeds' Faculty of Engineering have discovered how to recover significant quantities of rare-earth oxides, present in titanium dioxide minerals. The rare-earth oxides, which are indispensable for the manufacture of wind turbines, energy-efficient lighting, and hybrid and electric cars, are extracted or reclaimed simply and cheaply from the waste materials of another industrial process.

If taken to industrial scale, the new process could eventually shift the balance of power in global supply, breaking China's near monopoly on these scarce but crucial resources. China currently holds 95 per cent of the world's reserves of rare earth metals in a multi-billion dollar global market in which demand is growing steadily.

"These materials are also widely used in the engines of cars and electronics, defence and nuclear industries(1). In fact they cut across so many leading edge technologies, the additional demand for device related applications is set to outstrip supply," said Professor Animesh Jha, who led the research at Leeds.

"There is a serious risk that technologies that can make a major environmental impact could be held back through lack of the necessary raw materials – but hopefully our new process, which is itself much 'greener' than current techniques, could make this less likely."

Despite their name, the fifteen rare earth metals occur more commonly within the Earth's crust than precious metals such as gold and platinum, but their oxides are rarely found in sufficient concentrations to allow for commercial mining and purification. They are, however, found relatively frequently alongside titanium dioxide - a versatile mineral used in everything from cosmetics and medicines to electronics and the aerospace industries, which Professor Jha has been researching for the last eight years.

The Leeds breakthrough came as Professor Jha and his team were fine-tuning a patented industrial process they have developed to extract higher yields of titanium dioxide and refine it to over 99 per cent purity. Not only does the technology eliminate hazardous wastes, cut costs and carbon dioxide emissions, the team also discovered they can extract significant quantities of rare earth metal oxides as co-products of the refining process(2).

"Our recovery rate varies between 60 and 80 per cent, although through better process engineering we will be able to recover more in the future," says Professor Jha. "But already, the recovery of oxides of neodymium (Nd), cerium (Ce) and lanthanum (La), from the waste products - which are most commonly found with titanium dioxide minerals - is an impressive environmental double benefit."

The research has been funded by the Engineering and Physical Sciences Research Council (EPSRC), the former DTI's Sustainable Technology Programme and industrial sponsor, Cristal Global in US (formerly Millennium Inorganic Chemicals) through a PhD studentship for team member Graham Cooke.

Professor Animesh Jha | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>