Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW's Newly Named 'Lamborghini Lab' Brings Composite Parts to Sports-car Arena

08.10.2009
A partnership between the University of Washington and the Italian sports-car company Automobili Lamborghini has been formalized, and the presidents of both organizations today attended the naming ceremony of the UW's Automobili Lamborghini Advanced Composite Structures Laboratory.

The UW is the first university in the country to collaborate with Lamborghini. The company has committed to provide substantial funding for lab equipment and support for UW undergraduate and graduate students.

"This partnership is a win-win situation," said Matthew O'Donnell, dean of the UW's College of Engineering. "It further establishes the Pacific Northwest as a leader in composites research, it funds equipment for a UW engineering lab and it provides students with valuable research experience that's directly tied to real-world applications."

The UW and Lamborghini have worked closely during the past two years. The UW lab has hosted Lamborghini engineers for month-long periods; UW faculty have traveled to Italy to conduct small classes on the fundamentals of composites design and certification; and the university has sent engineering graduate students for internships at Lamborghini’s Bologna headquarters.

"Lamborghini remains committed to investing in its future, and advancing carbon fiber composite technologies is the key to achieving many of our goals," said Lamborghini president Stephan Winkelmann, who attended the ceremony. "The UW and its collaborations have enabled Automobili Lamborghini to proceed with confidence in the development of innovative, composite-intensive structures."

Composite materials are made up of distinct parts – plywood, fiberglass and polyester are all composite materials. High-end industries are beginning to use materials such as carbon fiber combined with epoxy, itself a composite material, to build stronger and lighter components.

"Composites are no longer the future, they are the present of structural materials for anything that’s high-performance, whether it’s aerospace or golf clubs or sports cars," said lab director Paolo Feraboli, a UW assistant professor of aeronautics and astronautics. "Monolithic materials like aluminum just won't cut it anymore."

Feraboli, a native of Italy, earned his undergraduate degree in Bologna and worked at Lamborghini on composite materials in 2001 and 2002. He continued a relationship with Lamborghini while establishing the UW’s Advanced Composite Structures Laboratory in 2007.

The lab's equipment includes a lightning-strike generator for simulated lightning strikes up to 100,000 amps; a drop tower for inflicting damage from foreign objects; a pneumatic crash sled capable of crushing full-size vehicle prototypes; and a high-speed video camera that can take 82,000 frames per second.

Research focuses on short-term, industry-driven testing of new materials in scenarios such as bird strike, lightning strike or, in this case, crashes.

Lamborghini uses carbon fiber, a strong, lightweight composite material, in its new cars. The Murcielago LP 670-4 SuperVeloce incorporates carbon composites in its floor, transmission tunnel and outer skin, for a total of roughly one third composite materials by weight. Lamborghini says it plans to increase power-to-weight ratios of its cars by using composites to decrease the vehicles' overall mass, which also lowers carbon dioxide emissions.

For more than a decade UW aeronautics engineers have worked closely with the Boeing Co. to develop and test composite parts for the 787 Dreamliner. Testing for Lamborghini means exploring different questions, as well as having the flexibility to develop prototype parts in a shorter turnaround time, Feraboli noted.

Today's events at the UW, sponsored by Lamborghini, included speeches, test drives of Lamborghini cars and lab tours.

"Partnerships between the UW and industry leaders like Lamborghini give our students the advantage of working on real-world problems," said UW President Mark Emmert. “We are excited that UW researchers and Lamborghini engineers will be collaborating to bring innovative materials to the automobile industry.”

For more information, contact Feraboli at 206-543-2170 or feraboli@aa.washington.edu

Feraboli | Newswise Science News
Further information:
http://www.washington.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>