Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual snail shell could be a model for better armor

19.01.2010
Unique structure helps dissipate energy that would cause weaker shells to fracture

New insights about a tiny snail that lives on the ocean floor could help scientists design better armor for soldiers and vehicles, according to MIT researchers.

A team of materials scientists, led by MIT Associate Professor Christine Ortiz, report that the shell of the so-called "scaly-foot" snail is unlike any other naturally occurring or manmade armor. The study suggests that its unique three-layer structure dissipates energy that would cause weaker shells to fracture.

Copying various aspects of the structure could help scientists design better armor for military use, says Ortiz, who is a member of MIT's Institute for Soldier Nanotechnologies. The new study was partly funded by the Army and the Department of Defense and will appear in the Proceedings of the National Academy of Sciences the week of Jan. 18.

Ortiz' attention was drawn to this interesting gastropod in 2003, when its discovery was first reported. The snail lives in a relatively harsh environment on the floor of the Indian Ocean, near hydrothermal vents that spew hot water. Therefore it is exposed to fluctuations in temperature as well as high acidity, and also faces attack from predators such as crabs and other snail species.

When a crab attacks a snail, it grasps the snail's shell with its claws and squeezes it until it breaks — for days if necessary. The claws generate mechanical energy that eventually fractures the shell, unless it is strong enough to resist.

In the new paper, Ortiz and her colleagues, including MIT Dean of Engineering Subra Suresh, report that the shell of the hot vent gasotropod has several features that help dissipate mechanical energy from a potential penetrating predatory attack. Of particular importance is its tri-layered shell structure, which consists of an outer layer embedded with iron sulfide granules, a thick organic middle layer, and a calcified inner layer.

Most other snail shells have a calcified layer with a thin organic coating on the outside.. In the scaly foot gastropod, simulations suggest that the relatively thick organic middle layer can absorb much energy during a penetrating attack. It may also help to dissipate heat and thermal fluctuations exhibited near hydrothermal vents.

How they did it: Ortiz and her colleagues measured the mechanical properties of the snail shell using a machine called an indenter, which has a diamond tip. By measuring the force applied to the shell, and the shell's resulting displacement, they can calculate its mechanical properties.

Next steps: Ortiz is looking at host of natural exoskeletons in order to extract protective design principles, including chitons, urchins, beetles, and armored fish.

Source: "Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod," Haimin Yao et al. Proceedings of the National Academy of Sciences, week of Jan. 18, 2010.

Funding: National Science Foundation, Singapore-MIT Alliance, U.S. Army through the MIT Institute for Soldier Nanotechnologies, Raytheon, and the National Security Science and Engineering Faculty Fellowship Program.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>