Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Houston professor taking next step with graphene research

20.10.2010
The 2010 Nobel Prize in Physics went to the two scientists who first isolated graphene, one-atom-thick crystals of graphite. Now, a researcher with the University of Houston Cullen College of Engineering is trying to develop a method to mass-produce this revolutionary material.

Graphene has several properties that make it different from literally everything else on Earth: it is the first two-dimensional material ever developed; the world's thinnest and strongest material; the best conductor of heat ever found; a far better conductor of electricity than copper; it is virtually transparent; and is so dense that no gas can pass through it. These properties make graphene a game changer for everything from energy storage devices to flat device displays.

Most importantly, perhaps, is graphene's potential as a replacement for silicon in computer chips. The properties of graphene would enable the historical growth in computing power to continue for decades to come.

To realize these benefits, though, a way to create plentiful, defect-free graphene must be developed. Qingkai Yu, an assistant research professor with the college's department of electrical and computer engineering and the university's Center for Advanced Materials, is developing methods to mass-produce such high-quality graphene.

Yu is using a technology known as chemical vapor deposition. During this process, he heats methane to around 1000 degrees Celsius, breaking the gas down into its building blocks of carbon and hydrogen atoms. The carbon atoms then attach to a metallic surface to form graphene.

"This approach could produce cheap, high-quality graphene on a large scale," Yu said.

Yu first demonstrated the viability of chemical vapor deposition for graphene creation two years ago in a paper in the journal Applied Physics Letters. He has since continued working to perfect this method.

Yu's initial research would often result in several layers of graphene stacked together on a nickel surface. He subsequently discovered the effectiveness of copper for graphene creation. Copper has since been adopted by graphene researchers worldwide.

Yu's work is not finished. The single layers of graphene he is now able to create are formed out of multiple graphene crystals that join together as they grow. The places where these crystals combine, known as the grain boundaries, are defects that limit the usefulness of graphene, particularly as a replacement for silicon-based computer chips.

Yu is attempting to create large layers of graphene that form out of a single crystal.

"You can imagine how important this sort of graphene is," said Yu. "Semiconductors became a multibillion-dollar industry based on single-crystal silicon and graphene is called the post-silicon-era material. So single-crystal graphene is the Holy Grail for the next age of semiconductors."

Yu is conducting his research in collaboration with UH Ph.D. students Wei Wu and Zhihua Su as well as postdoctoral researcher Zhihong Liu. These efforts have been supported by the National Science Foundation, the U.S. Department of Defense, the U.S. Department of Energy, SEMATECH and the UH Center for Advanced Materials.

Laura Tolley | EurekAlert!
Further information:
http://www.uh.edu

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>