Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique breakthrough in bulk metallic glass manufacturing

19.11.2012
Researchers from Sportstech Additive Manufacturing Group at Mid Sweden University have verified the patented technology of the Swedish company Exmet AB by succeeding in making the world first sample of iron based bulk metallic glass (BMG, also amorphous metal or glassy alloy) using electron beam manufacturing technology. This may be a breakthrough in the manufacturing of BMG components.

All initial studies on the sample conducted at Mid Sweden University (including the resilience and microscopy examination) support the claims that this first sample has indeed an amorphous structure, i.e. a structure that differs from a regular crystalline structure. Further thorough studies are under way and the results will be soon reported in a scientific publication.

This shiny tile attached to the solid stainless plate is unique in few aspects. Firstly, metallic glasses (also amorphous metals, BMG or glassy alloys) on their own have unique properties. They are extremely strong (2-15 times than crystalline counterparts), extremely elastic (golf clubs with a face made of BMG) and are often non-corrosive. Amorphous metals have also shown promising resistance against metal fatigue.

ARCAM, electron beam melting (EBM®), a member of the wide family of additive manufacturing technologies, makes it possible to manufacture components of extremely complex shapes within a single process.

– In many cases, additive manufacturing is both faster and less expensive than other, more mature manufacturing methods. In some cases it can yield components that are simply not possible to manufacture using other technologies. And the tile is made of the modern, iron-based BMG, which is relatively inexpensive, lighter than common steel and does not contain environmentally hazardous rare earth metals, says Mikael Bäckström.

Worldwide research of BMGs is driven by the promises of their unique properties. Many application areas, from engineering to biomedical implant manufacturing, can potentially be revolutionized by using advantages of BMGs.

Until now, the manufacturing of even small BMG components has been quite complex and very expensive. Making large BMG components using traditional manufacturing methods, like melt spinning, casting, powder metallurgy or thermoplastic forming, is not possible.

– In all cases when hot bulk components cool down slowly, the atoms have enough time to re-arrange into a regular crystalline structure. Only processes with an extremely quick cooling period, when the atoms “freeze” from the disordered liquid state very quickly, result in BMG formations. This is why until now, we have only been able to manufacture small or rather thin BMG components, says Mikael Bäckström.

The success of the present research makes a new opening promising to revolutionize the manufacturing of the products and components made from such unique materials as BMG. Preliminary results have already shown that the weight of commercial products can be reduced by 90 % if the technology is exploited. Application areas in need of strong non-corrosive elastic materials are likely to be the main winners of applying the BMGs.

The originator of the worldwide patent for beam based additive manufacturing of amorphous metals is owned by the Swedish company Exmet AB. This ensures the commercial success for the verified technology and future licensees.

Recently, researchers from Sportstech at Mid Sweden University won the award for the most innovative use of EBM technology at an international user conference arranged by ARCAM. It was awarded by, and in competition with, internationally renowned material researchers and advanced users. The award also indicates the commercial value of this technology and the worldwide patent.

- There is great interest in our patented technology on an international basis. We are negotiating with some of the world´s largest companies about applying the technology to different fields, such as aerospace, automotive, electronics and medical devices. The cooperation with Mid Sweden University has worked out very well and we look forward to continuing this work. Simultaneously, we work on powder technology and on verifying Exmet´s technology for laser methods. Altogether, these are exciting times for all of us. The future prospects of Swedish technology, research and export revenue within this field are bright, says Mattias Unosson, CEO of Exmet AB.

The research was carried out in cooperation with the companies Exmet AB, ARCAM AB and Öhlins Racing AB. The funding partners leading to the successful results were the Swedish Agency for Economic and Regional Growth (Tillväxtverket) and the Swedish Governmental Agency for Innovation Systems (Vinnova).
For further information, please contact:
Mikael Bäckström, Ph.D. Senior lecturer, Sports Technology, Mid Sweden University, +46 (0)70 540 06 74, e-mail: mikael.backstrom@miun.se

Mattias Unosson, CEO, Exmet AB, Ph.D. Solid Mechanics +46 (0)70 493 45 36, e-mail: mattias.unosson@exmet.se

Johan Landin | idw
Further information:
http://www.vr.se

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>