Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique breakthrough in bulk metallic glass manufacturing

19.11.2012
Researchers from Sportstech Additive Manufacturing Group at Mid Sweden University have verified the patented technology of the Swedish company Exmet AB by succeeding in making the world first sample of iron based bulk metallic glass (BMG, also amorphous metal or glassy alloy) using electron beam manufacturing technology. This may be a breakthrough in the manufacturing of BMG components.

All initial studies on the sample conducted at Mid Sweden University (including the resilience and microscopy examination) support the claims that this first sample has indeed an amorphous structure, i.e. a structure that differs from a regular crystalline structure. Further thorough studies are under way and the results will be soon reported in a scientific publication.

This shiny tile attached to the solid stainless plate is unique in few aspects. Firstly, metallic glasses (also amorphous metals, BMG or glassy alloys) on their own have unique properties. They are extremely strong (2-15 times than crystalline counterparts), extremely elastic (golf clubs with a face made of BMG) and are often non-corrosive. Amorphous metals have also shown promising resistance against metal fatigue.

ARCAM, electron beam melting (EBM®), a member of the wide family of additive manufacturing technologies, makes it possible to manufacture components of extremely complex shapes within a single process.

– In many cases, additive manufacturing is both faster and less expensive than other, more mature manufacturing methods. In some cases it can yield components that are simply not possible to manufacture using other technologies. And the tile is made of the modern, iron-based BMG, which is relatively inexpensive, lighter than common steel and does not contain environmentally hazardous rare earth metals, says Mikael Bäckström.

Worldwide research of BMGs is driven by the promises of their unique properties. Many application areas, from engineering to biomedical implant manufacturing, can potentially be revolutionized by using advantages of BMGs.

Until now, the manufacturing of even small BMG components has been quite complex and very expensive. Making large BMG components using traditional manufacturing methods, like melt spinning, casting, powder metallurgy or thermoplastic forming, is not possible.

– In all cases when hot bulk components cool down slowly, the atoms have enough time to re-arrange into a regular crystalline structure. Only processes with an extremely quick cooling period, when the atoms “freeze” from the disordered liquid state very quickly, result in BMG formations. This is why until now, we have only been able to manufacture small or rather thin BMG components, says Mikael Bäckström.

The success of the present research makes a new opening promising to revolutionize the manufacturing of the products and components made from such unique materials as BMG. Preliminary results have already shown that the weight of commercial products can be reduced by 90 % if the technology is exploited. Application areas in need of strong non-corrosive elastic materials are likely to be the main winners of applying the BMGs.

The originator of the worldwide patent for beam based additive manufacturing of amorphous metals is owned by the Swedish company Exmet AB. This ensures the commercial success for the verified technology and future licensees.

Recently, researchers from Sportstech at Mid Sweden University won the award for the most innovative use of EBM technology at an international user conference arranged by ARCAM. It was awarded by, and in competition with, internationally renowned material researchers and advanced users. The award also indicates the commercial value of this technology and the worldwide patent.

- There is great interest in our patented technology on an international basis. We are negotiating with some of the world´s largest companies about applying the technology to different fields, such as aerospace, automotive, electronics and medical devices. The cooperation with Mid Sweden University has worked out very well and we look forward to continuing this work. Simultaneously, we work on powder technology and on verifying Exmet´s technology for laser methods. Altogether, these are exciting times for all of us. The future prospects of Swedish technology, research and export revenue within this field are bright, says Mattias Unosson, CEO of Exmet AB.

The research was carried out in cooperation with the companies Exmet AB, ARCAM AB and Öhlins Racing AB. The funding partners leading to the successful results were the Swedish Agency for Economic and Regional Growth (Tillväxtverket) and the Swedish Governmental Agency for Innovation Systems (Vinnova).
For further information, please contact:
Mikael Bäckström, Ph.D. Senior lecturer, Sports Technology, Mid Sweden University, +46 (0)70 540 06 74, e-mail: mikael.backstrom@miun.se

Mattias Unosson, CEO, Exmet AB, Ph.D. Solid Mechanics +46 (0)70 493 45 36, e-mail: mattias.unosson@exmet.se

Johan Landin | idw
Further information:
http://www.vr.se

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>