Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique anti-reflective and self-cleaning plastic films to be ramped up for industry use

03.08.2012
Scientists from A*STAR’s Institute of Materials Research and Engineering (IMRE) will partner companies to develop, prototype and conduct pilot large scale manufacturing of nanoimprinted materials with better performance and at potentially lower cost than current production methods.
Fast, high-volume production of plastics with specially engineered surfaces will soon be available using a cheaper and simpler method. IMRE and its Industrial Consortium On Nanoimprint (ICON) partner companies are piloting roll-to-roll nanoimprint technology to mass produce two types of patterned nanoimprinted plastic films.

These are films with low reflectivity and better viewing angles, as well as durable, scratch-resistant films with ‘self-cleaning’ surfaces. This technology can be more cost effective than conventional batch production as ICON uses roll-to-roll processing, which enables the continuous, high throughput production of such materials on a large scale. Potential applications of such mass-produced anti-reflective films are in the mobile device and tablet markets while the self-cleaning plastics can be applied to surfaces such as walls of buildings.

IMRE and five companies, namely, Innox Higa Singapore Pte Ltd, Micro Resist Technology GmbH, NTT Advanced Technology, SABIC Innovative Plastics and Solves Innovative Technology will work together to develop the materials and scale up production of the films. Nanoimprinting technology involves creating arrays of very tiny, nano-sized surfaces to form unique patterns that give the surfaces certain properties such as low reflectivity, super-hydrophobicity (water repelling), non-sticky adhesiveness or anti-bacteria qualities.

In this collaboration, the partners are developing tougher resins for the nanostructures that are then patterned onto the plastics via IMRE’s unique nanopatterning processes. The process is then easily scaled up using ultraviolet roll-to-roll nanoimprinters so that the films can be used in eventual prototyping on surfaces and devices.

“The partnership with industries to advance the technology towards scale-up will bring nanoimprinting technology a step closer to full industry adoption,” said IMRE scientist Dr Low Hong Yee adding that one of the goals of ICON has been to nurture nanoimprint technology from a primarily laboratory-based process to one with industrial manufacturing and consumer application potential.

“Nanoimprinting is a very versatile and extraordinary technology that turns ordinary surfaces into functional ones. It is also encouraging to see the translation from science to large-scale manufacturing in such a short span of time,” said Prof Andy Hor, Executive Director of IMRE.
“We are a company that specialises in photoresists and polymers for micro and nanolithography. Within the ICON project, we will provide tailor-made polymer materials for nanostructured functional films. It is a unique opportunity for us to adapt materials specifically for roll-to-roll processes as well as for “hard” industrial requirements which cannot be achieved by today’s off-the-shelf materials. This will strengthen Micro Resist Technology’s market business prospects as global supplier of materials for next-generation lithography and nanolithography,” said Dr Marko Vogler, Business Unit Manager, Nanoimprint Materials and Hybrid Polymers, Micro Resist Technology GmbH, Germany.

“SABIC Innovative Plastics is excited to be part of this ICON project. It is a unique platform provided by IMRE for us to access advanced nanoimprint technology and enhance our core competencies to provide innovative solutions to our customers and end users in various market segments,” said Dr Mahari Tjahjadi, Technology Director, Specialty Film & Sheet, SABIC Innovative Plastics.

“This is a very exciting time for us from the perspective of a local company. Since being involved in the pioneering development of cutting edge technology can put us on the global map, Solves is ready to support mass production using nanoimprint technology!” said Mr Koh Teng Hwee, Managing Director of Solves Innovative Technology, a local small and medium enterprise (SME) that helped co-develop the UV roll-to-roll tool with the IMRE team.
The pilot manufacturing project will last a year after which the consortium can further develop and market the technology.

For media enquiries, please contact:

Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
For technical enquiries, please contact:
Dr Jaslyn Law
Scientist II
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 7902
E-mail lawj@imre.a-star.edu.sg
ANNEX A – A*STAR Corporate Profiles

About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.
About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.
ANNEX B – More information on ICON and nanoimprint technology

About nanoimprint technology and ICON

Nanoimprint technology produces nanometer-sized structures of greater complexity using fewer processing steps, while minimising wastage of materials. It has evolved from a lithography technology for the semiconductor industry to a platform process technology that can be adapted to a wide range of applications. The Industrial Consortium On Nanoimprint (ICON) is Singapore’s first nanotechnology consortium that encourages companies to adopt versatile, industry-ready nanoimprinting technology that can bring products to the market through sustainable manufacturing. The members of ICON will gain first-hand access to these new technologies by working on joint projects to develop new products and applications that can potentially have huge savings in R&D.

Under ICON, three projects have been successfully launched since August 2010. This is the fourth project in ICON on the topic of large area functional film and in collaboration with Innox Higa Singapore Pte Ltd, Micro Resist Technology GmbH, NTT Advanced Technology, SABIC Innovative Plastics, and Solves Innovative Technology.

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>