Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unique anti-reflective and self-cleaning plastic films to be ramped up for industry use

Scientists from A*STAR’s Institute of Materials Research and Engineering (IMRE) will partner companies to develop, prototype and conduct pilot large scale manufacturing of nanoimprinted materials with better performance and at potentially lower cost than current production methods.
Fast, high-volume production of plastics with specially engineered surfaces will soon be available using a cheaper and simpler method. IMRE and its Industrial Consortium On Nanoimprint (ICON) partner companies are piloting roll-to-roll nanoimprint technology to mass produce two types of patterned nanoimprinted plastic films.

These are films with low reflectivity and better viewing angles, as well as durable, scratch-resistant films with ‘self-cleaning’ surfaces. This technology can be more cost effective than conventional batch production as ICON uses roll-to-roll processing, which enables the continuous, high throughput production of such materials on a large scale. Potential applications of such mass-produced anti-reflective films are in the mobile device and tablet markets while the self-cleaning plastics can be applied to surfaces such as walls of buildings.

IMRE and five companies, namely, Innox Higa Singapore Pte Ltd, Micro Resist Technology GmbH, NTT Advanced Technology, SABIC Innovative Plastics and Solves Innovative Technology will work together to develop the materials and scale up production of the films. Nanoimprinting technology involves creating arrays of very tiny, nano-sized surfaces to form unique patterns that give the surfaces certain properties such as low reflectivity, super-hydrophobicity (water repelling), non-sticky adhesiveness or anti-bacteria qualities.

In this collaboration, the partners are developing tougher resins for the nanostructures that are then patterned onto the plastics via IMRE’s unique nanopatterning processes. The process is then easily scaled up using ultraviolet roll-to-roll nanoimprinters so that the films can be used in eventual prototyping on surfaces and devices.

“The partnership with industries to advance the technology towards scale-up will bring nanoimprinting technology a step closer to full industry adoption,” said IMRE scientist Dr Low Hong Yee adding that one of the goals of ICON has been to nurture nanoimprint technology from a primarily laboratory-based process to one with industrial manufacturing and consumer application potential.

“Nanoimprinting is a very versatile and extraordinary technology that turns ordinary surfaces into functional ones. It is also encouraging to see the translation from science to large-scale manufacturing in such a short span of time,” said Prof Andy Hor, Executive Director of IMRE.
“We are a company that specialises in photoresists and polymers for micro and nanolithography. Within the ICON project, we will provide tailor-made polymer materials for nanostructured functional films. It is a unique opportunity for us to adapt materials specifically for roll-to-roll processes as well as for “hard” industrial requirements which cannot be achieved by today’s off-the-shelf materials. This will strengthen Micro Resist Technology’s market business prospects as global supplier of materials for next-generation lithography and nanolithography,” said Dr Marko Vogler, Business Unit Manager, Nanoimprint Materials and Hybrid Polymers, Micro Resist Technology GmbH, Germany.

“SABIC Innovative Plastics is excited to be part of this ICON project. It is a unique platform provided by IMRE for us to access advanced nanoimprint technology and enhance our core competencies to provide innovative solutions to our customers and end users in various market segments,” said Dr Mahari Tjahjadi, Technology Director, Specialty Film & Sheet, SABIC Innovative Plastics.

“This is a very exciting time for us from the perspective of a local company. Since being involved in the pioneering development of cutting edge technology can put us on the global map, Solves is ready to support mass production using nanoimprint technology!” said Mr Koh Teng Hwee, Managing Director of Solves Innovative Technology, a local small and medium enterprise (SME) that helped co-develop the UV roll-to-roll tool with the IMRE team.
The pilot manufacturing project will last a year after which the consortium can further develop and market the technology.

For media enquiries, please contact:

Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
For technical enquiries, please contact:
Dr Jaslyn Law
Scientist II
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 7902
ANNEX A – A*STAR Corporate Profiles

About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.
About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.
ANNEX B – More information on ICON and nanoimprint technology

About nanoimprint technology and ICON

Nanoimprint technology produces nanometer-sized structures of greater complexity using fewer processing steps, while minimising wastage of materials. It has evolved from a lithography technology for the semiconductor industry to a platform process technology that can be adapted to a wide range of applications. The Industrial Consortium On Nanoimprint (ICON) is Singapore’s first nanotechnology consortium that encourages companies to adopt versatile, industry-ready nanoimprinting technology that can bring products to the market through sustainable manufacturing. The members of ICON will gain first-hand access to these new technologies by working on joint projects to develop new products and applications that can potentially have huge savings in R&D.

Under ICON, three projects have been successfully launched since August 2010. This is the fourth project in ICON on the topic of large area functional film and in collaboration with Innox Higa Singapore Pte Ltd, Micro Resist Technology GmbH, NTT Advanced Technology, SABIC Innovative Plastics, and Solves Innovative Technology.

Eugene Low | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>