Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected adhesion properties of graphene may lead to new nanotechnology devices

24.08.2011
Graphene, considered the most exciting new material under study in the world of nanotechnology, just got even more interesting, according to a new study by a group of researchers at the University of Colorado Boulder.

The new findings -- that graphene has surprisingly powerful adhesion qualities -- are expected to help guide the development of graphene manufacturing and of graphene-based mechanical devices such as resonators and gas separation membranes, according to the CU-Boulder team. The experimentsshowed that the extreme flexibility of graphene allows it to conform to the topography of even the smoothest substrates.

Graphene consists of a single layer of carbon atoms chemically bonded in a hexagonal chicken wire lattice. Its unique atomic structure could some day replace silicon as the basis of electronic devices and integrated circuits because of its remarkable electrical, mechanical and thermal properties, said Assistant Professor Scott Bunch of the CU-Boulder mechanical engineering department and lead study author.

A paper on the subject was published online in the Aug. 14 issue of Nature Nanotechnology. Co-authors on the study included CU-Boulder graduate students Steven Koenig and NarasimhaBoddeti and Professor Martin Dunn of the mechanical engineering department.

"The real excitement for me is the possibility of creating new applications that exploit the remarkable flexibility and adhesive characteristics of graphene and devising unique experiments that can teach us more about the nanoscale properties of this amazing material," Bunch said.

Not only does graphene have the highest electrical and thermal conductivity among all materials known, but this "wonder material" has been shown to be the thinnest, stiffest and strongest material in the world, as well as being impermeable to all standard gases. It's newly discovered adhesion properties can now be added to the list of the material's seemingly contradictory qualities, said Bunch.

The CU-Boulder team measured the adhesion energy of graphene sheets, ranging from one to five atomic layers, with a glass substrate, using a pressurized "blister test" to quantify the adhesion between graphene and glass plates.

Adhesion energy describes how "sticky" two things are when placed together. Scotch tape is one example of a material with high adhesion; the gecko lizard, which seemingly defies gravity by scaling up vertical walls using adhesion between its feet and the wall, is another. Adhesion also canplay a detrimental role, as in suspended micromechanical structures where adhesion can cause device failure or prolong the development of a technology, said Bunch.

The CU research, the first direct experimental measurements of the adhesion of graphene nanostructures, showed that so-called "van der Waals forces" -- the sum of the attractive or repulsive forces between molecules -- clamp the graphene samples to the substrates and also hold together the individual graphene sheets in multilayer samples.

The researchers found the adhesion energies between graphene and the glass substrate were several orders of magnitude larger than adhesion energies in typical micromechanical structures, an interaction they described as more liquid-like than solid-like, said Bunch.

The CU-Boulder study was funded primarily by the National Science Foundation and the Defense Advanced Research Projects Agency.

The importance of graphene in the scientific world was illustrated by the 2010 Nobel Prize in physics that honored two scientists at Manchester University in England, Andre K. Geim and Konstantin Novoselov, for producing, isolating, identifying and characterizing graphene.

There is interest in exploiting graphene's incredible mechanical properties to create ultrathin membranes for energy-efficient separations such as those needed for natural gas processing or water purification, while graphene's superior electrical properties promise to revolutionize the microelectronics industry, said Bunch.

In all of these applications, including any large-scale graphene manufacturing, the interaction that graphene has with a surface is of critical importance and a scientific understanding will help push the technology forward, he said.

Contact:
Scott Bunch, 303-492-6802, joseph.bunch@colorado.edu
Carol Rowe, 303-492-7426, carol.rowe@colorado.edu

Scott Bunch | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>