Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering oxygen's role in enhancing red LEDs

13.01.2016

Oxygen is indispensable to animal and plant life, but its presence in the wrong places can feed a fire and cause iron to rust.

In the fabrication of solid state lighting devices, scientists are learning, oxygen also plays a two-edged role. While oxygen can impede the effectiveness of gallium nitride (GaN), an enabling material for LEDs, small amounts of oxygen in some cases are needed to enhance the devices' optical properties. GaN doped with europium (Eu), which could provide the red color in LEDs and other displays, is one such case.


This is a) shows the europium (Eu) distribution of the delta structure (DS) samples with alternating 10-nanometer gallium nitride (GaN) layers and 4-nm GaN:Eu layers. A zoomed in view (b) of the DS sample structure aligns with a plot of the atomic percentage of Eu and oxygen as a function of space. The background signal of Eu is also indicated for reference.

Credit: B. Mitchell, D. Timmerman, J. Poplawsky, W. Zhu, D. Lee, R. Wakamatsu, J. Takatsu, M. Matsuda, W. Guo, K. Lorenz, E. Alves, A. Koizumi, V. Dierolf & Y. Fujiwara

Last week, an international group of researchers shed light on this seeming contradiction and reported that the quantity and location of oxygen in GaN can be fine-tuned to improve the optical performance of Eu-doped GaN devices. The group includes researchers from Lehigh, Osaka University in Japan, the Instituto Superior Técnico in Portugal, the University of Mount Union in Ohio, and Oak Ridge National Laboratory in Tennessee.

Writing in Scientific Reports, a Nature publication, the group said that small quantities of oxygen promote the uniform incorporation of Eu into the crystal lattices of GaN. The group also demonstrated a method of incorporating Eu uniformly that utilizes only the oxygen levels that are inevitably present in the GaN anyway. Eu, a rare earth (RE) element, is added to GaN as a "dopant" to provide highly efficient red color emission, which is still a challenge for GaN-based optoelectronic devices.

The devices' ability to emit light is dependent on the relative homogeneity of Eu incorporation, said Volkmar Dierolf, professor and chair of Lehigh's physics department.

"Some details, such as why the oxygen is needed for Eu incorporation, are still unclear," said Dierolf, "but we have determined that the amount required is roughly 2 percent of the amount of Eu ions. For every 100 Eu ions, you need two oxygen atoms to facilitate the incorporation of Eu to GaN.

"If the oxygen is not there, the Eu clusters up and does not incorporate. When the oxygen is present at about 2 percent, oxygen passivation takes place, allowing the Eu to incorporate into the GaN without clustering."

The article is titled "Utilization of native oxygen in Eu(RE)-doped GaN for enabling device compatibility in optoelectronic applications." The lead author, Brandon Mitchell, received his Ph.D. from Lehigh in 2014 and is now an assistant professor of physics and astronomy at the University of Mount Union and a visiting professor at Osaka University.

Coauthors of the article include Dierolf; Yasufumi Fujiwara, a professor of materials science at Osaka University; and Jonathan D. Poplawsky, a research associate at Oak Ridge National Laboratory who received his Ph.D. from Lehigh in 2012.

A comprehensive study

Gallium nitride, a hard and durable semiconductor, is valued in solid state lighting because it emits light in the visible spectrum and because its wide band gap makes GaN electronic devices more powerful and energy-efficient than devices made of silicon and other semiconductors.

The adverse effect of oxygen on GaN's properties has been much discussed in the scientific literature, the researchers wrote in Scientific Reports, but oxygen's influence on, and interaction with, RE dopants in GaN is less well understood.

"The presence of oxygen in GaN," the group wrote in their article, which was published online Jan. 4, "...is normally discussed with a purely negative connotation, where possible positive aspects of its influence are not considered.

"For the continued optimization of this material, the positive and negative roles of critical defects, such as oxygen, need to be explored."

The group used several imaging techniques, including Rutherford Backscattering, Atomic Probe Tomography and Combined Excitation Emission Spectroscopy, to obtain an atomic-level view of the diffusion and local concentrations of oxygen and Eu in the GaN crystal lattice.

Its investigation, the group wrote, represented the "first comprehensive study of the critical role that oxygen has on Eu in GaN." The group chose to experiment with Eu-doped GaN (GaN:Eu), said Dierolf, because europium emits bright light in the red portion of the electromagnetic spectrum, a promising quality given the difficulty scientists have encountered in realizing red LED light.

The group said its results "strongly indicate that for single layers of GaN:Eu, significant concentrations of oxygen are required to ensure uniform Eu incorporation and favorable optical properties.

"However, for the high performance and reliability of GaN-based devices, the minimization of oxygen is essential. It is clear that these two requirements are not mutually compatible."

Preliminary LED devices containing a single 300-nanometer active GaN:Eu layer have been demonstrated in recent years, the group reported, but have not yet achieved commercial viability, in part because of the incompatibility of oxygen with GaN.

To overcome that hurdle, said Dierolf, the researchers decided that instead of growing one thick, homogeneous layer of GaN:Eu they would grow several thinner layers of alternating doped and undoped regions. This approach, they found, utilizes the relatively small amount of oxygen that is naturally present in GaN grown with organo-metallic vapor phase epitaxy (OMVPE), the common method of preparing GaN.

"Instead of growing a thick layer of Eu-doped GaN," said Dierolf, "we grew a layer that alternated doped and undoped regions. Through the diffusion of the europium ion, oxygen from the undoped regions was utilized to incorporate the Eu into the GaN. The europium then diffused into the undoped regions."

To determine the optimal amount of oxygen needed to circumvent the oxygen-GaN incompatibility, the researchers also conducted experiments on GaN grown with an Eu "precursor" containing oxygen and on GaN intentionally doped with argon-diluted oxygen.

They found that the OMVPE- grown GaN contained significantly less oxygen than the other samples.

"The concentration of this oxygen [in the OMVPE- grown GaN] is over two orders of magnitude lower than those [concentrations] found in the samples grown with the oxygen-containing Eu...precursor," the group wrote, "rendering the material compatible with current GaN-based devices.

"We have demonstrated that the oxygen concentration in GaN:Eu materials can be reduced to a device-compatible level. Periodic optimization of the concentration ratio between the normally occurring oxygen found in GaN and the Eu ions resulted in uniform Eu incorporation, without sacrificing emission intensity.

"These results appear to coincide with observations in other RE-doped GaN materials. Adoption of the methods discussed in this article could have a profound influence on the future optimization of these systems as well as GaN:Eu."

The group plans next to grow GaN quantum well structures and determine if they enable Eu to incorporate even more favorably and effectively into GaN. Toward that end, Dierolf and Nelson Tansu, professor of electrical and computer engineering and director of Lehigh's Center for Photonics and Nanoelectronics, have been awarded a Collaborative Research Opportunity (CORE) grant from Lehigh.

###

The other coauthors of the Scientific Reports paper were D. Timmerman, W. Zhu, D. Lee, R. Wakamatsu, J. Takatsu, M. Matsuda, W. Guo, A. Koizumi, and Y. Fujiwara from Osaka University, and K. Lorenz and E. Alves from the Campus Tecnológico e Nuclear of the Instituto Superior Técnico in Bobadela, Portugal.

Media Contact

Lori Friedman
lof214@lehigh.edu
610-758-3224

 @lehighunews

http://www.lehigh.edu 

Lori Friedman | EurekAlert!

Further reports about: LED concentrations of oxygen optical properties optoelectronic

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>