Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultrasonic Fingerprint Sensor May Take Smartphone Security to New Level


A new ultrasonic fingerprint sensor measures 3-D image of your finger’s surface and the tissue beneath it—enhancing biometrics and information security for smartphones and other devices

Fingerprint sensor technology currently used in smartphones like the iPhone 6 produces a two-dimensional image of a finger’s surface, which can be spoofed fairly easily with a printed image of the fingerprint. A newly developed ultrasonic sensor eliminates that risk by imaging the ridges and valleys of the fingerprint’s surface, and the tissue beneath, in three dimensions.

Dave Horsley/University of California, Davis

An ultrasonic fingerprint sensor measures a three-dimensional, volumetric image of the finger’s surface and the tissues beneath—making it difficult to “spoof” or fake.

“Using passwords for smartphones was a big security problem, so we anticipated that a biometric solution was ahead,” said David A. Horsley, a professor of mechanical and aerospace engineering at the University of California, Davis. He is a director of the Berkeley Sensor and Actuator Center, which is located on the campuses of UC Davis and the University of California, Berkeley and is co-directed by Professor Bernhard Boser at UC Berkeley.

“After Apple announced a fingerprint sensor in their new iPhone in 2013, it was inevitable that more would follow," said Horsley. He and his colleagues describe their new technology this week, in a story appearing on the cover of the journal Applied Physics Letters, from AIP Publishing.

The origins of the new technology began to come together in 2007, when the teams at the Berkeley Sensor and Actuator Center collaborated to initiate research into piezoelectric-micromachined ultrasonic transducers (PMUTs).

“We developed arrays of PMUTs, along with a custom application-specific integrated circuit (ASIC) and the supporting electronics,” Horsley said. “Our work was so successful that we spun off Chirp Microsystems, in 2013, to commercialize it.” Shortly before then, in 2011, while exploring other uses for their PMUT technology, they quickly realized that fingerprint sensing was an ideal fit.

"Luckily, we recruited a group of exceptional students to realize our vision, as well as partners within the industry—our co-authors at InvenSense Inc. and a few other companies—who funded the work and fabricated our designs," Horsley said.

The basic concepts behind the researchers’ technology are akin to those of medical ultrasound imaging. They created a tiny ultrasound imager, designed to observe only a shallow layer of tissue near the finger’s surface. “Ultrasound images are collected in the same way that medical ultrasound is conducted,” said Horsley. “Transducers on the chip’s surface emit a pulse of ultrasound, and these same transducers receive echoes returning from the ridges and valleys of your fingerprint’s surface.”

The basis for the ultrasound sensor is an array of MEMS ultrasound devices with highly uniform characteristics, and therefore very similar frequency response characteristics (see video).

To fabricate their imager, the group employed existing microelectromechanical systems (MEMS) technology, which smartphones rely on for such functions as microphones and directional orientation. They used a modified version of the manufacturing process used to make the MEMS accelerometer and gyroscope found in the iPhone and many other consumer electronics devices.

“Our chip is fabricated from two wafers—a MEMS wafer that contains the ultrasound transducers and a CMOS wafer that contains the signal processing circuitry,” explained Horsley. “These wafers are bonded together, then the MEMS wafer is ‘thinned’ to expose the ultrasound transducers.” (CMOS, or complementary metal–oxide–semiconductor, is the silicon-based technology used to make transistors in microchips.)

Horsley's group views ultrasound as the next frontier for MEMS technology. “Because we were able to use low-cost, high-volume manufacturing processes that produce hundreds of millions of MEMS sensors for consumer electronics each year, our ultrasound chips can be manufactured at an extremely low cost,” he said.

The imager is powered by a 1.8-Volt power supply, using a power-efficient charge pump on their ASIC or application-specific integrated circuit. “Our ultrasound transducers have high sensitivity and the receiver electronics are located directly beneath the array, which results in low electrical parasitics,” Horsley noted. “Using low-voltage integrated circuits will reduce the cost of our sensor and open up myriad new applications where the cost, size, and power consumption of existing ultrasound sensors are currently prohibitive.”

Within the realm of biometrics and information security, the group’s work is particularly significant, Horsley said. “Our ultrasonic fingerprint sensors have the ability to measure a three-dimensional, volumetric image of the finger surface and the tissues beneath the surface—making fingerprint sensors more robust and secure.”

Beyond biometrics and information security purposes, the new technology is expected to find many other applications, including “low-cost ultrasound as a medical diagnostic tool or for personal health monitoring,” he added.

The group also made arrays of MEMS ultrasound devices with highly uniform characteristics, which allowed them to verify that the PMUTs have very similar frequency response characteristics (see video).

The article, "Ultrasonic Fingerprint Sensor Using a Piezoelectronic Micromachined Ultrasonic Transducer Array Integrated with CMOS Electronics," is authored by Y. Lu, H. Tang, S. Fung, Q. Wang, J.M. Tsai, M. Daneman, B.E. Boser and D.A. Horsley. It will be published in the journal Applied Physics Letters on June 29, 2015 (DOI: 10.1063/1. 4922915). After that date, it can be accessed at:

The authors of this study are affiliated with UC Davis, UC Berkeley and InvenSense, Inc.

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: 

Catherine Meyers | newswise

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>