Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultrasensitive Biosensor from Molybdenite Semiconductor Outshines Graphene


UC Santa Barbara researchers demonstrate atomically thin, ultrasensitive and scalable molybdenum disulfide field-effect transistor based biosensors and establish their potential for single-molecule detection

Move over, graphene. An atomically thin, two-dimensional, ultrasensitive semiconductor material for biosensing developed by researchers at UC Santa Barbara promises to push the boundaries of biosensing technology in many fields, from health care to environmental protection to forensic industries.

Based on molybdenum disulfide or molybdenite (MoS2), the biosensor material — used commonly as a dry lubricant — surpasses graphene’s already high sensitivity, offers better scalability and lends itself to high-volume manufacturing. Results of the researchers’ study have been published in ACS Nano.

“This invention has established the foundation for a new generation of ultrasensitive and low-cost biosensors that can eventually allow single-molecule detection — the holy grail of diagnostics and bioengineering research,” said Samir Mitragotri, co-author and professor of chemical engineering and director of the Center for Bioengineering at UCSB. “Detection and diagnostics are a key area of bioengineering research at UCSB and this study represents an excellent example of UCSB’s multifaceted competencies in this exciting field.”

The key, according to UCSB professor of electrical and computer engineering Kaustav Banerjee, who led this research, is MoS2’s band gap, the characteristic of a material that determines its electrical conductivity.

Semiconductor materials have a small but nonzero band gap and can be switched between conductive and insulated states controllably. The larger the band gap, the better its ability to switch states and to insulate leakage current in an insulated state. MoS2’s wide band gap allows current to travel but also prevents leakage and results in more sensitive and accurate readings.

The limitations of graphene
While graphene has attracted wide interest as a biosensor due to its two-dimensional nature that allows excellent electrostatic control of the transistor channel by the gate, and high surface-to-volume ratio, the sensitivity of a graphene field-effect transistor (FET) biosensor is fundamentally restricted by the zero band gap of graphene that results in increased leakage current, leading to reduced sensitivity, explained Banerjee, who is also the director of the Nanoelectronics Research Lab at UCSB.

Graphene has been used, among other things, to design FETs — devices that regulate the flow of electrons through a channel via a vertical electric field directed into the channel by a terminal called a “gate.” In digital electronics, these transistors control the flow of electricity throughout an integrated circuit and allow for amplification and switching.

In the realm of biosensing, the physical gate is removed, and the current in the channel is modulated by the binding between embedded receptor molecules and the charged target biomolecules to which they are exposed. Graphene has received wide interest in the biosensing field and has been used to line the channel and act as a sensing element whose surface potential (or conductivity) can be modulated by the interaction (known as conjugation) between the receptor and target molecules that results in net accumulation of charges over the gate region.

However, said the research team, despite graphene’s excellent characteristics, its performance is limited by its zero band gap. Electrons travel freely across a graphene FET — hence, it cannot be “switched off” — which in this case results in current leakages and higher potential for inaccuracies.

Much research in the graphene community has been devoted to compensating for this deficiency, either by patterning graphene to make nanoribbons or by introducing defects in the graphene layer — or using bilayer graphene stacked in a certain pattern that allows band gap opening upon application of a vertical electric field — for better control and detection of current.

Enter MoS2, a material already making waves in the semiconductor world for the similarities it shares with graphene, including its atomically thin hexagonal structure, and planar nature, as well as what it can do that graphene can’t: act like a semiconductor.

“Monolayer or few-layer MoS2 have a key advantage over graphene for designing an FET biosensor: They have a relatively large and uniform band gap (1.2-1.8 eV, depending on the number of layers) that significantly reduces the leakage current and increases the abruptness of the turn-on behavior of the FETs, thereby increasing the sensitivity of the biosensor,” said Banerjee.

‘The best of everything’
Additionally, according to Deblina Sarkar, a PhD student in Banerjee’s lab and the lead author of the article, two-dimensional MoS2 is relatively simple to manufacture.

“While one-dimensional materials such as carbon nanotubes and nanowires also allow excellent electrostatics and at the same time possess band gap, they are not suitable for low-cost mass production due to their process complexities,” she said. “Moreover, the channel length of MoS2 FET biosensor can be scaled down to the dimensions similar to those of small biomolecules such as DNA or small proteins, still maintaining good electrostatics, which can lead to high sensitivity even for detection of single quanta of these biomolecular species,” she added.

“In fact, atomically thin MoS2 provides the best of everything: great electrostatics due to their ultra-thin body, scalability (due to large band gap), as well as patternability due to their planar nature that is essential for high-volume manufacturing,” said Banerjee. 

The MoS2 biosensors demonstrated by the UCSB team have already provided ultrasensitive and specific protein sensing with a sensitivity of 196 even at 100 femtomolar (a billionth of a millionth of a mole) concentrations. This protein concentration is similar to one drop of milk dissolved in a hundred tons of water. An MoS2-based pH sensor achieving sensitivity as high as 713 for a pH change by one unit along with efficient operation over a wide pH range (3-9) is also demonstrated in the same work.

“This transformative technology enables highly specific, low-power, high-throughput physiological sensing that can be multiplexed to detect a number of significant, disease-specific factors in real time,” commented Scott Hammond, executive director of UCSB’s Translational Medicine Research Laboratories.

Biosensors based on conventional FETs have been gaining momentum as a viable technology for the medical, forensic and security industries since they are cost-effective compared to optical detection procedures. Such biosensors allow for scalability and label-free detection of biomolecules — removing the step and expense of labeling target molecules with florescent dye. “In essence,” continued Hammond, “the promise of true evidence-based, personalized medicine is finally becoming reality.”

“This demonstration is quite remarkable,” said Andras Kis, professor at École Polytechnique Fédérale de Lausanne in Switzerland and a leading scientist in the field of 2D materials and devices. “At present, the scientific community worldwide is actively seeking practical applications of 2D semiconductor materials such as MoS2 nanosheets. Professor Banerjee and his team have identified a breakthrough application of these nanomaterials and provided new impetus for the development of low-power and low-cost ultrasensitive biosensors,” continued Kis, who is not connected to the project.

Wei Liu and Xuejun Xie from UCSB’s Department of Electrical and Computer Engineering and Aaron Anselmo from the Department of Chemical Engineering also conducted research for this study. Research on this project was supported by the National Science Foundation, the California NanoSystems Institute at UCSB and the Materials Research Laboratory at UCSB, a National Science Foundation MRSEC.

Concept art of a molybdenum disulfide field-effect transistor based biosensor demonstrated by UCSB researchers with ability to detect ultra-low (femtomolar) concentrations with high sensitivity that is 74-fold higher than that of graphene FET biosensors. Photo Credit: Peter Allen

Contact Info: 

Sonia Fernandez
(805) 893-4765

Sonia Fernandez | Eurek Alert!
Further information:

More articles from Materials Sciences:

nachricht The route to high temperature superconductivity goes through the flat land
23.11.2015 | Aalto University

nachricht Quantum spin could create unstoppable, one-dimensional electron waves
19.11.2015 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

How a genetic locus protects adult blood-forming stem cells

26.11.2015 | Life Sciences

Stanford technology makes metal wires on solar cells nearly invisible to light

26.11.2015 | Power and Electrical Engineering

Peering into cell structures where neurodiseases emerge

26.11.2015 | Life Sciences

More VideoLinks >>>