Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC Engineers to Develop Models for 'Self-Healing' Materials

19.05.2009
Materials engineered to self-repair or self-heal have been the subject of Hollywood films for decades.

While prototypes of materials that self-seal cracks in buildings, roadways, airplanes, spacecraft and other devices are now under development, engineers still face the challenge of turning the multiple physical and mechanical processes of these materials into mathematical models for use by developers.

Two University of Illinois at Chicago engineers -- Eduard Karpov, assistant professor of civil and materials engineering and Elisa Budyn, UIC assistant professor of mechanical and bioengineering -- are up to the task. They have just received a three-year, $400,000 grant from the National Science Foundation to develop novel methods involving description of the relevant multi-physics phenomena that can be used for computer-based design and property predictions of self-healing materials and bone tissue.

"To model different kinds of physical processes together within a single numerical framework is a big challenge," said Karpov. The goal is to develop a theoretical and computational framework to write modeling software used by engineers and developers.

"The main questions include how to couple chemical reactions and the mechanics of materials," Karpov said. "For example, crack propagation inside a material and capillary transport of the healing agent along the crack."

"Another question is how biological tissue, such as bone, heals when stimulated mechanically," said Budyn. "For example, it has been observed that bone can grow inside the pores of an implant."

Karpov is a specialist in a field called multiphysics modeling, which examines multiple concurrent physical phenomena within a single numerical framework. Because of the intrinsic multi-physics nature of the behavior and performance of these new self-healing materials, the usual theories for material mechanics are not applicable.

Budyn is a specialist in biomechanics and fracture mechanics, which models the mechanics of biological tissues and their failure.

Karpov and Budyn's research will help in writing new rules of the game.

Self-healing materials are inspired by such biological processes as bone ingrowths, skin wounds and muscle tears that heal by themselves. "We have a lot to learn from nature," Budyn said.

Understanding biological tissues is key to the ability to engineer materials such as metals, concrete and polymer composites with self-healing properties that promise to minimize the possibility of catastrophic failure in devices such as airplanes and spacecraft, or in hard-to-repair areas such as electronic circuit boards or human medical implants.

"There are so many practical applications," Karpov said. "It's very exciting."

Paul Francuch | Newswise Science News
Further information:
http://ww.uic.edu

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>