Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC Engineers to Develop Models for 'Self-Healing' Materials

19.05.2009
Materials engineered to self-repair or self-heal have been the subject of Hollywood films for decades.

While prototypes of materials that self-seal cracks in buildings, roadways, airplanes, spacecraft and other devices are now under development, engineers still face the challenge of turning the multiple physical and mechanical processes of these materials into mathematical models for use by developers.

Two University of Illinois at Chicago engineers -- Eduard Karpov, assistant professor of civil and materials engineering and Elisa Budyn, UIC assistant professor of mechanical and bioengineering -- are up to the task. They have just received a three-year, $400,000 grant from the National Science Foundation to develop novel methods involving description of the relevant multi-physics phenomena that can be used for computer-based design and property predictions of self-healing materials and bone tissue.

"To model different kinds of physical processes together within a single numerical framework is a big challenge," said Karpov. The goal is to develop a theoretical and computational framework to write modeling software used by engineers and developers.

"The main questions include how to couple chemical reactions and the mechanics of materials," Karpov said. "For example, crack propagation inside a material and capillary transport of the healing agent along the crack."

"Another question is how biological tissue, such as bone, heals when stimulated mechanically," said Budyn. "For example, it has been observed that bone can grow inside the pores of an implant."

Karpov is a specialist in a field called multiphysics modeling, which examines multiple concurrent physical phenomena within a single numerical framework. Because of the intrinsic multi-physics nature of the behavior and performance of these new self-healing materials, the usual theories for material mechanics are not applicable.

Budyn is a specialist in biomechanics and fracture mechanics, which models the mechanics of biological tissues and their failure.

Karpov and Budyn's research will help in writing new rules of the game.

Self-healing materials are inspired by such biological processes as bone ingrowths, skin wounds and muscle tears that heal by themselves. "We have a lot to learn from nature," Budyn said.

Understanding biological tissues is key to the ability to engineer materials such as metals, concrete and polymer composites with self-healing properties that promise to minimize the possibility of catastrophic failure in devices such as airplanes and spacecraft, or in hard-to-repair areas such as electronic circuit boards or human medical implants.

"There are so many practical applications," Karpov said. "It's very exciting."

Paul Francuch | Newswise Science News
Further information:
http://ww.uic.edu

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>