Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA scientists invent long-lasting, near infrared-emitting material

21.11.2011
Implications for medical diagnostics, security and solar energy

Materials that emit visible light after being exposed to sunlight are commonplace and can be found in everything from emergency signage to glow-in-the-dark stickers. But until now, scientists have had little success creating materials that emit light in the near-infrared range, a portion of the spectrum that only can be seen with the aid of night vision devices.

In a paper just published in the early online edition of the journal Nature Materials, however, University of Georgia scientists describe a new material that emits a long-lasting, near-infrared glow after a single minute of exposure to sunlight. Lead author Zhengwei Pan, associate professor of physics and engineering in the Franklin College of Arts and Sciences and the Faculty of Engineering, said the material has the potential to revolutionize medical diagnostics, give the military and law enforcement agencies a "secret" source of illumination and provide the foundation for highly efficient solar cells.

"When you bring the material anywhere outside of a building, one minute of exposure to light can create a 360-hour release of near-infrared light," Pan said. "It can be activated by indoor fluorescent lighting as well, and it has many possible applications."

The material can be fabricated into nanoparticles that bind to cancer cells, for example, and doctors could visualize the location of small metastases that otherwise might go undetected. For military and law enforcement use, the material can be fashioned into ceramic discs that serve as a source of illumination that only those wearing night vision goggles can see. Similarly, the material can be turned into a powder and mixed into a paint whose luminescence is only visible to a select few.

The starting point for Pan's material is the trivalent chromium ion, a well-known emitter of near-infrared light. When exposed to light, its electrons at ground state quickly move to a higher energy state. As the electrons return to the ground state, energy is released as near-infrared light. The period of light emission is generally short, typically on the order of a few milliseconds. The innovation in Pan's material, which uses matrix of zinc and gallogermanate to host the trivalent chromium ions, is that its chemical structure creates a labyrinth of "traps" that capture excitation energy and store it for an extended period. As the stored energy is thermally released back to the chromium ions at room temperature, the compound persistently emits near-infrared light over period of up to two weeks.

In a process that Pan likens to perfecting a recipe, he and postdoctoral researcher Feng Liu and doctoral student Yi-Ying Lu spent three years developing the material. Initial versions emitted light for minutes, but through modifications to the chemical ingredients and the preparation—just the right amounts of sintering temperature and time—they were able to increase the afterglow from minutes to days and, ultimately, weeks.

"Even now, we don't think we've found the best compound," Pan said. "We will continuously tune the parameters so that we may find a much better one."

The researchers spent an additional year testing the material—indoors and out, as well as on sunny days, cloudy days and rainy days—to prove its versatility. They placed it in freshwater, saltwater and even a corrosive bleach solution for three months and found no decrease in performance.

In addition to exploring biomedical applications, Pan's team aims to use it to collect, store and convert solar energy. "This material has an extraordinary ability to capture and store energy," Pan said, "so this means that it is a good candidate for making solar cells significantly more efficient."

The U.S. Office of Naval Research, the National Science Foundation, the American Chemical Society Petroleum Research Fund and the UGA Research Foundation supported the research.

Zhengwei Pan | EurekAlert!
Further information:
http://www.uga.edu

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>