Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCLA engineers craft new material for high-performing 'supercapacitors'

Discovery could provide rapid power to small devices, large industrial equipment

Taking a significant step toward improving the power delivery of systems ranging from urban electrical grids to regenerative braking in hybrid vehicles, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have synthesized a material that shows high capability for both the rapid storage and release of energy.

In a paper published April 14 in the peer-reviewed journal Nature Materials, a team led by professor of materials science and engineering Bruce Dunn defines the characteristics of a synthesized form of niobium oxide — a compound based on an element used in stainless steel — with a great facility for storing energy. The material would be used in a "supercapacitor," a device that combines the high storage capacity of lithium ion batteries and the rapid energy-delivery ability of common capacitors.

UCLA researchers said the development could lead to extremely rapid charging of devices, ranging in applications from mobile electronics to industrial equipment. For example, supercapacitors are currently used in energy-capture systems that help power loading cranes at ports, reducing the use of hydrocarbon fuels such as diesel.

"With this work, we are blurring the lines between what is a battery and what is a supercapacitor," said Veronica Augustyn, a graduate student in materials science at UCLA and lead author of the paper. "The discovery takes the disadvantages of capacitors and the disadvantages of batteries and does away with them."

Batteries effectively store energy but do not deliver power efficiently because the charged carriers, or ions, move slowly through the solid battery material. Capacitors, which store energy at the surface of a material, generally have low storage capabilities.

Researchers on Dunn's team synthesized a type of niobium oxide that demonstrates substantial storage capacity through "intercalation pseudocapacitance," in which ions are deposited into the bulk of the niobium oxide in the same way grains of sand can be deposited between pebbles.

As a result, electrodes as much as 40 microns thick — about the same width as many commercial battery components — can quickly store and deliver energy on the same time scales as electrodes more than 100 times thinner.

Dunn emphasizes that although the electrodes are an important first step, "further engineering at the nanoscale and beyond will be necessary to achieve practical devices with high energy density that can charge in under a minute."

Co-authors of the study included Dunn; Sarah Tolbert, a UCLA chemistry and biochemistry professor; Augustyn and fellow UCLA Engineering graduate student Jong Woung Kim; Cornell University professor Héctor Abruña; Cornell postgraduate researcher Michael Lowe; Patrice Simon, a professor at the Université Paul Sabatier in Toulouse, France; and graduate student Jérémy Come and researcher Pierre-Louis Taberna of the Université Paul Sabatier.

The research was supported by a U.S. Department of Energy grant to the UCLA-based Energy Frontier Research Center for Molecularly Engineered Energy Materials; a Department of Energy grant to the Energy Materials Center at Cornell University; and a European Research Council grant to Université Paul Sabatier.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of more than 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cyber-security. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, wireless health, nanoelectronics, nanomedicine, renewable energy, customized computing, the smart grid, and the Internet, all funded by federal and private agencies and individual donors.

For more UCLA news, visit the UCLA Newsroom and follow us on Twitter.

Bill Kisliuk | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>