Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers fabricate new camouflage coating from squid protein

10.09.2013
Material that mimics calamari skin is invisible to infrared cameras

What can the U.S. military learn from a common squid? A lot about how to hide from enemies, according to researchers at UC Irvine’s Henry Samueli School of Engineering.

As detailed in a study published online in Advanced Materials, they have created a biomimetic infrared camouflage coating inspired by Loliginidae, also known as pencil squids or your everyday calamari.

Led by Alon Gorodetsky, an assistant professor of chemical engineering & materials science, the team produced reflectin – a structural protein essential in the squid’s ability to change color and reflect light – in common bacteria and used it to make thin, optically active films that mimic the skin of a squid.

With the appropriate chemical stimuli, the films’ coloration and reflectance can shift back and forth, giving them a dynamic configurability that allows the films to disappear and reappear when visualized with an infrared camera.

Infrared detection equipment is employed extensively by military forces for night vision, navigation, surveillance and targeting. The novelty of this coating lies in its functionality within the near-infrared region of the electromagnetic spectrum, roughly 700 to 1,200 nanometers, which matches the standard imaging range of most infrared visualization equipment. This region is not usually accessible to biologically derived reflective materials.

“Our approach is simple and compatible with a wide array of surfaces, potentially allowing many simple objects to acquire camouflage capabilities,” said Gorodetsky, whose work has possible applications in infrared stealth camouflage, energy-efficient reflective coatings and biologically inspired optics.

This is just the first step in developing a material that will self-reconfigure in response to an external signal, he added. The Samueli School researchers are currently formulating alternative, nonchemical strategies for triggering coloration changes in the reflectin coating.

“Our long-term goal is to create fabrics that can dynamically alter their texture and color to adapt to their environments,” Gorodetsky said. “Basically, we’re seeking to make shape-shifting clothing – the stuff of science fiction – a reality.”

Others on the UC Irvine team are Long Phan, David Ordinario, Emil Karshalev, Jonah-Micah Jocson and Anthony Burke. Ward Walkup of the California Institute of Technology also contributed to the study.

About the University of California, Irvine: Located in coastal Orange County, near a thriving employment hub in one of the nation’s safest cities, UC Irvine was founded in 1965. One of only 62 members of the Association of American Universities, it’s ranked first among U.S. universities under 50 years old by the London-based Times Higher Education. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Michael Drake since 2005, UC Irvine has more than 28,000 students and offers 192 degree programs. It’s Orange County’s second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/experts. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Lori Brandt | EurekAlert!
Further information:
http://www.uci.edu

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>