Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Breakthrough May Lead to Disposable e-Readers

23.11.2010
A discovery by University of Cincinnati engineering researcher Andrew Steckl could revolutionize display technology with e-paper that’s fast enough for video yet cheap enough to be disposable.
A breakthrough in a University of Cincinnati engineering lab that could clear the way for a low-cost, even disposable, e-reader is gaining considerable attention.

Electrical Engineering Professor Andrew Steckl’s research into an affordable, yet high-performance, paper-based display technology is being featured this week as the November cover story of ACS Applied Materials and Interfaces, one of the scientific journals for the American Chemical Society, the world's largest scientific society.
In the research, Steckl and UC doctoral student Duk Young Kim demonstrated that paper could be used as a flexible host material for an electrowetting device. Electrowetting (EW) involves applying an electric field to colored droplets within a display in order to reveal content such as type, photographs and video. Steckl’s discovery that paper could be used as the host material has far-reaching implications considering other popular e-readers on the market such as the Kindle and iPad rely on complex circuitry printed over a rigid glass substrate.

“One of the main goals of e-paper is to replicate the look and feel of actual ink on paper,” the researchers stated in the ACS article. “We have, therefore, investigated the use of paper as the perfect substrate for EW devices to accomplish e-paper on paper.”

Importantly, they found that the performance of the electrowetting device on paper is equivalent to that of glass, which is the gold standard in the field.

“It is pretty exciting," said Steckl. “With the right paper, the right process and the right device fabrication technique, you can get results that are as good as you would get on glass, and our results are good enough for a video-style e-reader.”

Steckl imagines a future device that is rollable, feels like paper yet delivers books, news and even high-resolution color video in bright-light conditions.

“Nothing looks better than paper for reading,” said Steckl, an Ohio Eminent Scholar. “We hope to have something that would actually look like paper but behave like a computer monitor in terms of its ability to store information. We would have something that is very cheap, very fast, full-color and at the end of the day or the end of the week, you could pitch it into the trash.”

Disposing of a paper-based e-reader, Steckl points out, is also far simpler in terms of the environmental impact.

“In general, this is an elegant method for reducing device complexity and cost, resulting in one-time-use devices that can be totally disposed after use,” the researchers pointed out.

Steckl’s goal is attract commercial interest in the technology for next-stage development, which he expects will take three to five years to get to market.

The work was supported, in part, by a grant from the National Science Foundation and was conducted at the Nanoelectronics Laboratory at the University of Cincinnati College of Engineering and Applied Science.

John Bach | EurekAlert!
Further information:
http://www.uc.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>