Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Ubiquitous element strategy’ for overcoming potential deficiencies of rare elements

06.07.2011
Japanese scientists report on a unique ‘ubiquitous element strategy’ to overcome the ‘rare-element crisis’ that was triggered by increasing demand for such elements as lithium, used in batteries, and dysprosium for Ne-Fe-B permanent magnets.

‘Ubiquitous element strategy’ for overcoming potential deficiencies of rare elements in the synthesis of industrially important electronic, thermionic, and structural materials

Japanese scientists report on a unique ‘ubiquitous element strategy’ for synthesizing industrially important electronic, thermionic, and structural materials using naturally abundant elements. This strategy aims to overcome the ‘rare-element crisis’ that was triggered by increasing demand for such elements as lithium, used in batteries, and dysprosium for Ne-Fe-B permanent magnets.

In the review article published in the journal Science and Technology of Advanced Materials, scientists from Tokyo Institute of Technology describe their research on the synthesis and applications of oxide materials based on the 20–30 most abundant elements including Si, Al, Ca, Na, and Mg. The key to this strategy is an in-depth knowledge of the role of elements in the physical properties of materials—knowledge available from research on the science and technology of nanometer-sized materials.

Research covered in this paper includes:

The conversion of ceramic 12CaO•7Al2O3 (C12A7)—interconnected, positively charged nano-cages—into a chemically and thermally stable transparent conductor which undergoes a metal-superconductor transition at 0.2 K. C12A7 has a wide bandgap of >7 eV and a low work function of 2.4 eV. The authors describe the synthesis, properties, and applications—light-emitting, electron field emitters, and nonvolatile memories—of C12A7 based on their own research.

The generation of ionized oxygen is important in the electronics industry for applications including the production of silicon diode layers on semiconductors. Conventional methods rely on the catalytic action of Pt—a metal in scarce supply. Here, the researchers describe the production of large quantities of atomic oxygen by incandescent heating of 2-mm-diameter tube of yttria-doped zirconia—a solid oxide electrolyte that conducts oxygen ions. This method of generating atomic oxygen is more efficient, highly selective in the types of ions generated, and enables lower temperature oxidation of silicon compared with thermal oxidation.

In another example of the ‘ubiquitous element strategy’ the authors describe the effect of phase transitions on the controlled fracture in mullite ceramics (3Al2O3•2SiO2), which is crucial for impact-resistant armor and bumper shields for spacecraft. The researchers found that mullite exhibited superior protection as Whipple bumper shields compared to conventional aluminum alloys “tested for the impact by an aluminum alloy flyer at 5.5 km/s”.

Other materials discussed include SrTiO3/TiO2, exhibiting a fivefold higher Seebeck effect compared with bulk material; the pulsed laser deposition of flat MgO(111) films on Al2O3(0001) substrates and of atomically flat MgO(111) films on YSZ(111) substrates with NiO(111) buffer layers.

This up to date and highly informative review includes 34 figures and 115 references.

Reference
Hideo Hosono1,2,3, Katsuro Hayashi2, Toshio Kamiya2,3, Toshiyuki Atou2 and Tomofumi Susaki2,4, “New functionalities in abundant element oxides: ubiquitous element strategy”,

Science and Technology of Advanced Materials 12 (2011) p. 034303. [http://dx.doi.org/10.1088/1468-6996/12/3/034303]

Media contacts: Mikiko Tanifuji
National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>