Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Ubiquitous element strategy’ for overcoming potential deficiencies of rare elements

06.07.2011
Japanese scientists report on a unique ‘ubiquitous element strategy’ to overcome the ‘rare-element crisis’ that was triggered by increasing demand for such elements as lithium, used in batteries, and dysprosium for Ne-Fe-B permanent magnets.

‘Ubiquitous element strategy’ for overcoming potential deficiencies of rare elements in the synthesis of industrially important electronic, thermionic, and structural materials

Japanese scientists report on a unique ‘ubiquitous element strategy’ for synthesizing industrially important electronic, thermionic, and structural materials using naturally abundant elements. This strategy aims to overcome the ‘rare-element crisis’ that was triggered by increasing demand for such elements as lithium, used in batteries, and dysprosium for Ne-Fe-B permanent magnets.

In the review article published in the journal Science and Technology of Advanced Materials, scientists from Tokyo Institute of Technology describe their research on the synthesis and applications of oxide materials based on the 20–30 most abundant elements including Si, Al, Ca, Na, and Mg. The key to this strategy is an in-depth knowledge of the role of elements in the physical properties of materials—knowledge available from research on the science and technology of nanometer-sized materials.

Research covered in this paper includes:

The conversion of ceramic 12CaO•7Al2O3 (C12A7)—interconnected, positively charged nano-cages—into a chemically and thermally stable transparent conductor which undergoes a metal-superconductor transition at 0.2 K. C12A7 has a wide bandgap of >7 eV and a low work function of 2.4 eV. The authors describe the synthesis, properties, and applications—light-emitting, electron field emitters, and nonvolatile memories—of C12A7 based on their own research.

The generation of ionized oxygen is important in the electronics industry for applications including the production of silicon diode layers on semiconductors. Conventional methods rely on the catalytic action of Pt—a metal in scarce supply. Here, the researchers describe the production of large quantities of atomic oxygen by incandescent heating of 2-mm-diameter tube of yttria-doped zirconia—a solid oxide electrolyte that conducts oxygen ions. This method of generating atomic oxygen is more efficient, highly selective in the types of ions generated, and enables lower temperature oxidation of silicon compared with thermal oxidation.

In another example of the ‘ubiquitous element strategy’ the authors describe the effect of phase transitions on the controlled fracture in mullite ceramics (3Al2O3•2SiO2), which is crucial for impact-resistant armor and bumper shields for spacecraft. The researchers found that mullite exhibited superior protection as Whipple bumper shields compared to conventional aluminum alloys “tested for the impact by an aluminum alloy flyer at 5.5 km/s”.

Other materials discussed include SrTiO3/TiO2, exhibiting a fivefold higher Seebeck effect compared with bulk material; the pulsed laser deposition of flat MgO(111) films on Al2O3(0001) substrates and of atomically flat MgO(111) films on YSZ(111) substrates with NiO(111) buffer layers.

This up to date and highly informative review includes 34 figures and 115 references.

Reference
Hideo Hosono1,2,3, Katsuro Hayashi2, Toshio Kamiya2,3, Toshiyuki Atou2 and Tomofumi Susaki2,4, “New functionalities in abundant element oxides: ubiquitous element strategy”,

Science and Technology of Advanced Materials 12 (2011) p. 034303. [http://dx.doi.org/10.1088/1468-6996/12/3/034303]

Media contacts: Mikiko Tanifuji
National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>