Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


‘Ubiquitous element strategy’ for overcoming potential deficiencies of rare elements

Japanese scientists report on a unique ‘ubiquitous element strategy’ to overcome the ‘rare-element crisis’ that was triggered by increasing demand for such elements as lithium, used in batteries, and dysprosium for Ne-Fe-B permanent magnets.

‘Ubiquitous element strategy’ for overcoming potential deficiencies of rare elements in the synthesis of industrially important electronic, thermionic, and structural materials

Japanese scientists report on a unique ‘ubiquitous element strategy’ for synthesizing industrially important electronic, thermionic, and structural materials using naturally abundant elements. This strategy aims to overcome the ‘rare-element crisis’ that was triggered by increasing demand for such elements as lithium, used in batteries, and dysprosium for Ne-Fe-B permanent magnets.

In the review article published in the journal Science and Technology of Advanced Materials, scientists from Tokyo Institute of Technology describe their research on the synthesis and applications of oxide materials based on the 20–30 most abundant elements including Si, Al, Ca, Na, and Mg. The key to this strategy is an in-depth knowledge of the role of elements in the physical properties of materials—knowledge available from research on the science and technology of nanometer-sized materials.

Research covered in this paper includes:

The conversion of ceramic 12CaO•7Al2O3 (C12A7)—interconnected, positively charged nano-cages—into a chemically and thermally stable transparent conductor which undergoes a metal-superconductor transition at 0.2 K. C12A7 has a wide bandgap of >7 eV and a low work function of 2.4 eV. The authors describe the synthesis, properties, and applications—light-emitting, electron field emitters, and nonvolatile memories—of C12A7 based on their own research.

The generation of ionized oxygen is important in the electronics industry for applications including the production of silicon diode layers on semiconductors. Conventional methods rely on the catalytic action of Pt—a metal in scarce supply. Here, the researchers describe the production of large quantities of atomic oxygen by incandescent heating of 2-mm-diameter tube of yttria-doped zirconia—a solid oxide electrolyte that conducts oxygen ions. This method of generating atomic oxygen is more efficient, highly selective in the types of ions generated, and enables lower temperature oxidation of silicon compared with thermal oxidation.

In another example of the ‘ubiquitous element strategy’ the authors describe the effect of phase transitions on the controlled fracture in mullite ceramics (3Al2O3•2SiO2), which is crucial for impact-resistant armor and bumper shields for spacecraft. The researchers found that mullite exhibited superior protection as Whipple bumper shields compared to conventional aluminum alloys “tested for the impact by an aluminum alloy flyer at 5.5 km/s”.

Other materials discussed include SrTiO3/TiO2, exhibiting a fivefold higher Seebeck effect compared with bulk material; the pulsed laser deposition of flat MgO(111) films on Al2O3(0001) substrates and of atomically flat MgO(111) films on YSZ(111) substrates with NiO(111) buffer layers.

This up to date and highly informative review includes 34 figures and 115 references.

Hideo Hosono1,2,3, Katsuro Hayashi2, Toshio Kamiya2,3, Toshiyuki Atou2 and Tomofumi Susaki2,4, “New functionalities in abundant element oxides: ubiquitous element strategy”,

Science and Technology of Advanced Materials 12 (2011) p. 034303. []

Media contacts: Mikiko Tanifuji
National Institute for Materials Science, Tsukuba, Japan
Tel. +81-(0)29-859-2494

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>