Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Type of Liquid Crystal Promises to Improve Performance of Digital Displays

07.10.2010
Chemists at Vanderbilt University have created a new class of liquid crystals with unique electrical properties that could improve the performance of digital displays used on everything from digital watches to flat panel televisions.

The achievement, which is the result of more than five years of effort, is described by Professor of Chemistry Piotr Kaszynski and graduate student Bryan Ringstrand in a pair of articles published online on Sept. 24 and Sept. 28 in the Journal of Materials Chemistry.

“We have created liquid crystals with an unprecedented electric dipole, more than twice that of existing liquid crystals,” saysKaszynski.

Electric dipoles are created in molecules by the separation of positive and negative charges. The stronger the charges and the greater the distance between them, the larger the electric dipole they produce.

In liquid crystals, the electric dipole is associated with the threshold voltage: the minimum voltage at which the liquid crystal operates. Higher dipoles allow lower threshold voltages. In addition, the dipole is a key factor in how fast liquid crystals can switch between bright and dark states. At a given voltage, liquid crystals with higher dipoles switch faster than those with lower dipoles.

Commercial potential
Vanderbilt has applied for a patent on the new class of materials. Some of the companies that manufacture liquid crystals for commercial applications have expressed interest and are currently evaluating it.

“Our liquid crystals have basic properties that make them suitable for practical applications, but they must be tested for durability, lifetime and similar characteristics before they can be used in commercial products,” Kaszynski says.

If it passes commercial testing, the new class of liquid crystals will be added to the complex molecular mixtures that are used in liquid crystal displays. These blends combine different types of liquid crystals and other additives that are used to fine-tune their characteristics, including viscosity, temperature range, optical properties, electrical properties and chemical stability. There are dozens of different designs for liquid crystal displays and each requires a slightly different blend.

Scientific significance
The newly discovered liquid crystals are not only important commercially but they are also important scientifically.

Since 1888 when they were discovered, scientists have discovered more than 100,000 natural and synthetic compounds that have a liquid crystal state. They have determined that one of the prerequisites for such a state is that the molecule must be shaped like either a rod or a disc. A second requirement is that it must contain both rigid and flexible parts. It takes a delicate balance of two opposing factors or forces to produce a material halfway between a crystal and a liquid. However, there is still a great deal about this unusual state that scientists do not yet understand.

For example, scientists are still trying to determine the effect that a liquid crystal’s electric dipole has on the temperature at which it becomes an ordinary liquid. The current consensus has been that increasing the strength of the dipole typically raises this transition temperature. The way in which the new type of liquid crystals are synthesized allowed Kaszynski and Ringstrand to test this theory by creating pairs of liquid crystals with the same geometry but different electric dipoles and measuring their transition temperatures. They found that subtle structural differences have a much greater effect on the transition temperature than do variations in the strength of the electric dipole.

Unique “zwitterionic” structure
What distinguishes the new class of liquid crystals is its “zwitterionic” structure. Zwitterions are chemical compounds that have a total net electrical charge of zero but contain positively and negatively charged groups. The newly developed liquid crystals contain a zwitterion made up of a negatively charged inorganic portion and a positively charged organic portion. Kaszynski first got the idea of making zwitterionic liquid crystals nearly 17 years ago when he first arrived at Vanderbilt. However, a critical piece of chemistry required to do so was missing. It wasn’t until 2002 when German chemists discovered the chemical procedure that made it possible for the Vanderbilt researchers to succeed in this effort.
The research was funded by a grant from the National Science Foundation.
For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News

David F. Salisbury | Newswise Science News
Further information:
http://www.vanderbilt.edu

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>