Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Pine Sap Into “Ever-Green” Plastics

22.02.2013
Plastic bags are a bane of nature. And not just bags – just about all plastics, really. Most are made out of petroleum, and a piece of plastic, if it misses the recycling bin and ends up in a landfill, will probably outlast human civilization.

But Chuanbing Tang at the University of South Carolina is developing new plastics that are “green” from the cradle to the grave. Given that the new polymers he’s working on often come from pine trees, firs and other conifers, he’s giving the word “evergreen” added resonance.

Rather than tapping a barrel of oil to obtain starting materials, Tang’s research group instead begins with the natural resins found in trees, especially evergreens. The rosin and turpentine derived from their wood is rich in hydrocarbons, similar but not identical to some components of petroleum.

Hydrocarbon-rich starting materials, whether from petroleum or tree resin, can be converted into various forms of what are commonly termed “plastics” through polymerization. With petroleum derivatives, scientists have invested more than a hundred years of research into refining the polymer chemistry involved, and their success in that endeavor is evident in the range of plastics now part of common parlance, such as Plexiglas, polycarbonate and PVC.

But processes for developing plastics from renewable sources, such as rosin and turpentine, are not nearly as developed. “Renewable polymers currently suffer from inferior performance in comparison to those derived from petroleum,” Tang said.

His laboratory is a national leader in helping change that situation. Tang just received a National Science Foundation CAREER award to further develop the polymer chemistry he has been refining since he arrived as a chemistry professor in USC’s College of Arts and Sciences in 2009. The award from NSF’s Division of Materials Research will support Tang’s laboratory through 2018.

“The aim is to understand how the macromolecular compositions and architectures dictate the properties of the materials we make,” Tang said. “If we can establish clear structure-property relationships, we will be able to achieve the kinds of results we now get from polymers made from petroleum.”

According to Tang, molecules derived from wood products are particularly worthwhile targets. “They’re a rich source of the cycloaliphatic and aromatic structures that make good materials after polymerization,” he said. “They have the rigid molecular structures and hydrophobicity that materials scientists know work well.”

They also have an advantage at the end of their life cycle. By virtue of being a direct product of biology, the renewable starting materials are a familiar sight for the microbes responsible for biodegradation. “Most plastics from non-renewable resources are generally not biodegradable,” Tang said. “With a polymer framework derived from renewable sources, we’re able to make materials that should break down more readily in the environment.”

Together with graduate student Perry Wilbon, Tang worked with Fuxiang Chu of the Chinese Academy of Forestry to prepare the first comprehensive review of terpenes, terpenoids, and rosin, three components of tree resin (and other natural products as well) that are plentiful sources of cycloaliphatic and aromatic structures. Published as the cover article in Wiley’s Macromolecular Rapid Communications in January 2013, the review is a blueprint for just one approach that Tang is taking to develop sustainable polymers from the greenest of sources.

This research was supported in part by an NSF CAREER award (1252611).

Steven Powell | Newswise
Further information:
http://www.sc.edu

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>