Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Pine Sap Into “Ever-Green” Plastics

22.02.2013
Plastic bags are a bane of nature. And not just bags – just about all plastics, really. Most are made out of petroleum, and a piece of plastic, if it misses the recycling bin and ends up in a landfill, will probably outlast human civilization.

But Chuanbing Tang at the University of South Carolina is developing new plastics that are “green” from the cradle to the grave. Given that the new polymers he’s working on often come from pine trees, firs and other conifers, he’s giving the word “evergreen” added resonance.

Rather than tapping a barrel of oil to obtain starting materials, Tang’s research group instead begins with the natural resins found in trees, especially evergreens. The rosin and turpentine derived from their wood is rich in hydrocarbons, similar but not identical to some components of petroleum.

Hydrocarbon-rich starting materials, whether from petroleum or tree resin, can be converted into various forms of what are commonly termed “plastics” through polymerization. With petroleum derivatives, scientists have invested more than a hundred years of research into refining the polymer chemistry involved, and their success in that endeavor is evident in the range of plastics now part of common parlance, such as Plexiglas, polycarbonate and PVC.

But processes for developing plastics from renewable sources, such as rosin and turpentine, are not nearly as developed. “Renewable polymers currently suffer from inferior performance in comparison to those derived from petroleum,” Tang said.

His laboratory is a national leader in helping change that situation. Tang just received a National Science Foundation CAREER award to further develop the polymer chemistry he has been refining since he arrived as a chemistry professor in USC’s College of Arts and Sciences in 2009. The award from NSF’s Division of Materials Research will support Tang’s laboratory through 2018.

“The aim is to understand how the macromolecular compositions and architectures dictate the properties of the materials we make,” Tang said. “If we can establish clear structure-property relationships, we will be able to achieve the kinds of results we now get from polymers made from petroleum.”

According to Tang, molecules derived from wood products are particularly worthwhile targets. “They’re a rich source of the cycloaliphatic and aromatic structures that make good materials after polymerization,” he said. “They have the rigid molecular structures and hydrophobicity that materials scientists know work well.”

They also have an advantage at the end of their life cycle. By virtue of being a direct product of biology, the renewable starting materials are a familiar sight for the microbes responsible for biodegradation. “Most plastics from non-renewable resources are generally not biodegradable,” Tang said. “With a polymer framework derived from renewable sources, we’re able to make materials that should break down more readily in the environment.”

Together with graduate student Perry Wilbon, Tang worked with Fuxiang Chu of the Chinese Academy of Forestry to prepare the first comprehensive review of terpenes, terpenoids, and rosin, three components of tree resin (and other natural products as well) that are plentiful sources of cycloaliphatic and aromatic structures. Published as the cover article in Wiley’s Macromolecular Rapid Communications in January 2013, the review is a blueprint for just one approach that Tang is taking to develop sustainable polymers from the greenest of sources.

This research was supported in part by an NSF CAREER award (1252611).

Steven Powell | Newswise
Further information:
http://www.sc.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>