Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Pine Sap Into “Ever-Green” Plastics

22.02.2013
Plastic bags are a bane of nature. And not just bags – just about all plastics, really. Most are made out of petroleum, and a piece of plastic, if it misses the recycling bin and ends up in a landfill, will probably outlast human civilization.

But Chuanbing Tang at the University of South Carolina is developing new plastics that are “green” from the cradle to the grave. Given that the new polymers he’s working on often come from pine trees, firs and other conifers, he’s giving the word “evergreen” added resonance.

Rather than tapping a barrel of oil to obtain starting materials, Tang’s research group instead begins with the natural resins found in trees, especially evergreens. The rosin and turpentine derived from their wood is rich in hydrocarbons, similar but not identical to some components of petroleum.

Hydrocarbon-rich starting materials, whether from petroleum or tree resin, can be converted into various forms of what are commonly termed “plastics” through polymerization. With petroleum derivatives, scientists have invested more than a hundred years of research into refining the polymer chemistry involved, and their success in that endeavor is evident in the range of plastics now part of common parlance, such as Plexiglas, polycarbonate and PVC.

But processes for developing plastics from renewable sources, such as rosin and turpentine, are not nearly as developed. “Renewable polymers currently suffer from inferior performance in comparison to those derived from petroleum,” Tang said.

His laboratory is a national leader in helping change that situation. Tang just received a National Science Foundation CAREER award to further develop the polymer chemistry he has been refining since he arrived as a chemistry professor in USC’s College of Arts and Sciences in 2009. The award from NSF’s Division of Materials Research will support Tang’s laboratory through 2018.

“The aim is to understand how the macromolecular compositions and architectures dictate the properties of the materials we make,” Tang said. “If we can establish clear structure-property relationships, we will be able to achieve the kinds of results we now get from polymers made from petroleum.”

According to Tang, molecules derived from wood products are particularly worthwhile targets. “They’re a rich source of the cycloaliphatic and aromatic structures that make good materials after polymerization,” he said. “They have the rigid molecular structures and hydrophobicity that materials scientists know work well.”

They also have an advantage at the end of their life cycle. By virtue of being a direct product of biology, the renewable starting materials are a familiar sight for the microbes responsible for biodegradation. “Most plastics from non-renewable resources are generally not biodegradable,” Tang said. “With a polymer framework derived from renewable sources, we’re able to make materials that should break down more readily in the environment.”

Together with graduate student Perry Wilbon, Tang worked with Fuxiang Chu of the Chinese Academy of Forestry to prepare the first comprehensive review of terpenes, terpenoids, and rosin, three components of tree resin (and other natural products as well) that are plentiful sources of cycloaliphatic and aromatic structures. Published as the cover article in Wiley’s Macromolecular Rapid Communications in January 2013, the review is a blueprint for just one approach that Tang is taking to develop sustainable polymers from the greenest of sources.

This research was supported in part by an NSF CAREER award (1252611).

Steven Powell | Newswise
Further information:
http://www.sc.edu

More articles from Materials Sciences:

nachricht When Proteins Shake Hands
19.02.2018 | Friedrich-Schiller-Universität Jena

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>