Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft identifies huge potential of nanocrystals in fuel cells

29.03.2011
The addition of extremely small crystals to solid electrolyte material has the potential to considerably raise the efficiency of fuel cells. Researchers at TU Delft were the first to document this accurately. Their second article on the subject in a very short time was published in the scientific journal, Advanced Functional Materials.
Electrolyte
The researchers at the Faculty of Applied Sciences at TU Delft were concentrating their efforts on improving electrolyte materials. This is the material between two electrodes, for example in a fuel cell or a battery. The better the characteristics of the electrolyte, the better, more compactly or more efficiently the fuel cell or battery works.
Solid matter
The electrolyte is usually a liquid, but this has a number of drawbacks. The liquid has to be very well enclosed, for example, and it takes up a relatively large amount of space. "It would therefore be preferable to have an electrolyte made of solid matter," says PhD student Lucas Haverkate. "Unfortunately though, that has disadvantages as well. The conductivity in solid matter is not as good as it is in a liquid."
Traffic jam on the motorway
"In a solid matter you have a network of ions, in which virtually every position in the network is taken. This makes it difficult for the charged particles (protons) to move from one electrode to another. It’s a bit like a traffic jam on a motorway. What you need to do is to create free spaces in the network."
Nanocrystals
One of the ways of achieving this, and therefore of increasing conductivity in solid electrolytes, is to add nanocrystals (of seven nanometres to around fifty nanometres), of Titanium Dioxide. "A characteristic of these TiO2 crystals is that they attract protons, and this creates more space in the network." The nanocrystals are mixed in the electrolyte with a solid acid (CsHSO4). This latter material 'delivers' the protons to the crystals. "The addition of the crystals appears to cause an enormous leap in the conductive capacity, up to a factor of 100," concludes Haverkate.
Similarity
This remarkable achievement by TU Delft has already led to two publications in the scientific journal Advanced Functional Materials. Last December, Haverkate published an article on the theory behind the results. His fellow PhD student, Wing Kee Chan, is the main author of a second item that appeared in the same publication this week. Chan focused on the experimental side of the research. "The nice thing about these two publications is that the experimental results and the theoretical underpinning strongly complement each other," says Haverkate.
Neutrons
Chan carried out measurements on the electrolyte material using the neutron diffraction method. This involves sending neutrons through the material. The way in which the neutrons are dispersed makes it possible to deduce certain characteristics of the material, such as the density of protons in the crystals. Haverkate: "It is the first time that measurements have been taken of solid-material electrolytes in this way, and on such a small scale. The fact that we had nuclear research technologies at the Reactor Institute Delft at our disposal was tremendously valuable."
Temperature
However, the combination of TiO2 and CsHSO4 does not mark the end of the search for a suitable solid-material electrolyte. Other material combinations will be tested that may achieve better scores in the area of stability, for example. Professor Fokko Mulder, who is Haverkate’s and Chan’s PhD supervisor, says. "At this stage, we are more concerned about acquiring a fundamental understanding and a useful model, than the concrete issue of finding out what the most suitable material is. It is important that we identify the effect of nanocrystals, and give it a theoretical basis. I think there is great potential for these electrolytes. They also have the extra benefit of continuing to function well over a wide range of temperatures, which is of particular relevance for applying them in fuel cells."
More information:
Lucas Haverkate, PhD student Fundamental Aspects of Materials and Energy, TU Delft. Tel: +31 (0) 15 278 9753, E-mail: l.a.haverkate@tudelft.nl.

Fokko Mulder, Full Professor Fundamental Aspects of Materials and Energy, TU Delft. Tel: +31 (0) 15 278 4870, E-mail: f.m.mulder@tudelft.nl

Ineke Boneschansker, Science Information Officer, TU Delft. Tel: +31 (0) 15 278 88499, e-mail: i.boneschansker@tudelft.nl.

Wing K. Chan, Lucas A. Haverkate, Wouter J.H. Borghols, Marnix Wagemaker, Stephen J. Picken, Ernst R.H. van Eck, Arno P.M. Kentgens, Mark R. Johnson, Gordon J. Kearley, Fokko M. Mulder. Direct View on Nanoionic Proton Mobility. Advanced Functional Materials. 24 March 2011.

Lucas A. Haverkate, Wing K. Chan, Fokko M. Mulder. Ionic Nanosystems: Large Space-Charge Effects in a Nanostructured Proton Conductor. Advanced Functional Materials. 9 December 2010.

Ineke Boneschansker | EurekAlert!
Further information:
http://www.tudelft.nl

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>